在△AOB中,C,D分別是OA,OB邊上的點,將△OCD繞點O順時針旋轉到△OC′D′.

(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點,證明:①AC′=BD′;②AC′⊥BD′;

(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點E,猜想∠AEB=θ是否成立?請說明理由.

 


(1)證明:①∵△OCD旋轉到△OC′D′,

∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,

∵OA=OB,C、D為OA、OB的中點,

∴OC=OD,

∴OC′=OD′,

在△AOC′和△BOD′中,

∴△AOC′≌△BOD′(SAS),

∴AC′=BD′;

②延長AC′交BD′于E,交BO于F,如圖1所示:

∵△AOC′≌△BOD′,

∴∠OAC′=∠OBD′,

又∠AFO=∠BFE,∠OAC′+∠AFO=90°,

∴∠OBD′+∠BFE=90°,

∴∠BEA=90°,

∴AC′⊥BD′;

(2)解:∠AEB=θ成立,理由如下:如圖2所示:

∵△OCD旋轉到△OC′D′,

∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,

∵CD∥AB,

,

,

,

又∠AOC′=∠BOD′,

∴△AOC′∽△BOD′,

∴∠OAC′=∠OBD′,

又∠AFO=∠BFE,

∴∠AEB=∠AOB=θ.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為(  )

 

A.

50°

B.

40°

C.

30°

D.

25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,反比例函數(shù)y=(k<0)的圖象與矩形ABCD的邊相交于E、F兩點,且BE=2AE,E(﹣1,2).

(1)求反比例函數(shù)的解析式;

(2)連接EF,求△BEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


反比例函數(shù)y=的圖象有一支位于第一象限,則常數(shù)a的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.

(1)求BC的長;

(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某校對九年級6個班學生平均一周的課外閱讀時間進行了統(tǒng)計,分別為(單位:h):3.5,4,3.5,5,5,3.5.這組數(shù)據(jù)的眾數(shù)是(  )

 

A.

3

B.

3.5

C.

4

D.

5

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,圓形鐵片與直角三角尺、直尺緊靠在一起平放在桌面上.已知鐵片的圓心為O,三角尺的直角頂點C落在直尺的10cm處,鐵片與直尺的唯一公共點A落在直尺的14cm處,鐵片與三角尺的唯一公共點為B,下列說法錯誤的是(  )

 

A.

圓形鐵片的半徑是4cm

B.

四邊形AOBC為正方形

 

C.

弧AB的長度為4πcm

D.

扇形OAB的面積是4πcm2

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


永州市雙牌縣的陽明山風光秀麗,歷史文化源遠流長,尤以山頂數(shù)萬畝野生杜鵑花最為壯觀,被譽為“天下第一杜鵑紅”.今年“五一”期間舉辦了“陽明山杜鵑花旅游文化節(jié)”,吸引了眾多游客前去觀光賞花.在文化節(jié)開幕式當天,從早晨8:00開始每小時進入陽明山景區(qū)的游客人數(shù)約為1000人,同時每小時走出景區(qū)的游客人數(shù)約為600人,已知陽明上景區(qū)游客的飽和人數(shù)約為2000人,則據(jù)此可知開幕式當天該景區(qū)游客人數(shù)飽和的時間約為( 。

 

A.

10:00

B.

12:00

C.

13:00

D.

16:00

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面直角坐標系中,點A(0,4),B(3,0),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為  

 

查看答案和解析>>

同步練習冊答案