【題目】下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對(duì)應(yīng)值,(表格中的符號(hào)“…”表示該項(xiàng)數(shù)據(jù)已丟失)

x

﹣1

0

1

ax2

1

ax2+bx+c

7

2

(1)求拋物線(xiàn)y=ax2+bx+c的表達(dá)式

(2)拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),直線(xiàn)AM交對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)于點(diǎn)B,當(dāng)△ADM△BDM的面積比為2:3時(shí),求B點(diǎn)坐標(biāo);

(3)在(2)的條件下,設(shè)線(xiàn)段BDx軸交于點(diǎn)C,試寫(xiě)出∠BAD∠DCO的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】(1) y=x2﹣4x+2;(2) 點(diǎn)B的坐標(biāo)為(5,7);(3)∠BAD∠DCO互補(bǔ),理由詳見(jiàn)解析.

【解析】

(1)由(1,1)在拋物線(xiàn)y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線(xiàn)y=x2+bx+c上可求出b、c的值,此題得解;

(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點(diǎn)A的坐標(biāo)即可求出點(diǎn)B的橫坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)B的坐標(biāo);

(3)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出A、D的坐標(biāo),過(guò)點(diǎn)AANx軸,交BD于點(diǎn)N,則∠AND=DCO,根據(jù)點(diǎn)B、D的坐標(biāo)利用待定系數(shù)法可求出直線(xiàn)BD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出BABD、BN的長(zhǎng)度,由三者間的關(guān)系結(jié)合∠ABD=NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=DAB,再由∠ANB+∠AND=180°可得出∠DAB+∠DCO=180°,即∠BAD和∠DCO互補(bǔ).

(1)當(dāng)x=1時(shí),y=ax2=1,

解得:a=1;

將(﹣1,7)、(0,2)代入y=x2+bx+c,得:

,解得:,

拋物線(xiàn)的表達(dá)式為y=x2﹣4x+2;

(2)∵△ADM△BDM同底,且△ADM△BDM的面積比為2:3,

點(diǎn)A到拋物線(xiàn)的距離與點(diǎn)B到拋物線(xiàn)的距離比為2:3.

拋物線(xiàn)y=x2﹣4x+2的對(duì)稱(chēng)軸為直線(xiàn)x=﹣=2,點(diǎn)A的橫坐標(biāo)為0,

點(diǎn)B到拋物線(xiàn)的距離為3,

點(diǎn)B的橫坐標(biāo)為3+2=5,

點(diǎn)B的坐標(biāo)為(5,7).

(3)∠BAD∠DCO互補(bǔ),理由如下:

當(dāng)x=0時(shí),y=x2﹣4x+2=2,

點(diǎn)A的坐標(biāo)為(0,2),

∵y=x2﹣4x+2=(x﹣2)2﹣2,

點(diǎn)D的坐標(biāo)為(2,﹣2).

過(guò)點(diǎn)AAN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,如圖所示.

設(shè)直線(xiàn)BD的表達(dá)式為y=mx+n(m≠0),

B(5,7)、D(2,﹣2)代入y=mx+n,

,解得:,

直線(xiàn)BD的表達(dá)式為y=3x﹣8.

當(dāng)y=2時(shí),有3x﹣8=2,

解得:x=,

點(diǎn)N的坐標(biāo)為(,2).

∵A(0,2),B(5,7),D(2,﹣2),

∴AB=5,BD=3,BN=,

==

∵∠ABD=∠NBA,

∴△ABD∽△NBA,

∴∠ANB=∠DAB.

∵∠ANB+∠AND=180°,

∴∠DAB+∠DCO=180°,

∴∠BAD∠DCO互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接ACDF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫(xiě)出BCCD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,E、F是對(duì)角線(xiàn)BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2(如圖(2);以此下去,則正方形AnBnCnDn的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足H在半徑OB上,AH=5,CD=,點(diǎn)E在弧AD上,射線(xiàn)AECD的延長(zhǎng)線(xiàn)交于點(diǎn)F.

(1)求圓O的半徑;

(2)如果AE=6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+c(a0)圖象如圖所示,下列結(jié)論:①abc0;②2ab0;③b2(a+c)2點(diǎn)(3,y1)(1,y2)都在拋物線(xiàn)上,則有y1y2.其中正確的結(jié)論有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,點(diǎn)在邊上,點(diǎn)在邊的延長(zhǎng)線(xiàn)上,且,垂足為的延長(zhǎng)線(xiàn)交于點(diǎn).

1)若,求四邊形的面積;

2)若,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙AAB于點(diǎn)D,交CA的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)EAB的平行線(xiàn)EF交⊙A于點(diǎn)F,連接AF、BF、DF

(1)求證:BF是⊙A的切線(xiàn).

(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個(gè)交點(diǎn)是C,一次函數(shù)m為實(shí)數(shù))的圖象為直線(xiàn)ll分別交x軸,y軸于AB兩點(diǎn),如圖1

(1)B點(diǎn)坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °

(2)若點(diǎn)N是直線(xiàn)AB與半圓CO的一個(gè)公共點(diǎn)(兩個(gè)公共點(diǎn)時(shí),N為右側(cè)一點(diǎn)),過(guò)點(diǎn)N作⊙P的切線(xiàn)交x軸于點(diǎn)E,如圖2.是否存在這樣的m的值,使得△EBN是直角三角形.若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案