【題目】我們知道、可以借助于函數(shù)圖象求方程的近似解,如圖(),把方程x2=1x的解看成函數(shù)y=x2的圖象與函數(shù)y=1x的圖象的交點的橫坐標,求得方程x2=1x的解為x=1.5,如圖(),已畫出了反比例函數(shù)y在第一象限內(nèi)的圖象,借助于此圖象求出方程x2x0的正數(shù)解.(要求畫出相應函數(shù)的圖象,結果精確到0.1)

【答案】畫圖見解析,正數(shù)解約為1.4

【解析】

根據(jù)題意可知,方程x2x0的解可看做是函數(shù)y與函數(shù)y=2x2的交點坐標,所以根據(jù)圖象可知方程x2x0的正數(shù)解約為1.4

x0

∴將x2x0兩邊同時除以x,得

2x20,

2x2,

x2x0的正數(shù)解視為由函數(shù)y與函數(shù)y=2x2的圖象在第一象限交點的橫坐標.

如圖:

∴正數(shù)解約為1.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,ECD邊上一點,且AE、BE分別平分∠DAB、∠ABC

1)求證:ADE≌△BCE

2)已知AD3,求矩形的另一邊AB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國慶期間某旅游點一家商鋪銷售一批成本為每件50元的商品,規(guī)定銷售單價不低于成本價,又不高于每件70,銷售量y()與銷售單價x()的關系可以近似的看作一次函數(shù)(如圖).

(1)請直接寫出y關于x之間的關系式

(2)設該商鋪銷售這批商品獲得的總利潤(總利潤=總銷售額一總成本)P元,求Px之間的函數(shù)關系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:x取何值時,P的值最大?最大值是多少?

(3)若該商鋪要保證銷售這批商品的利潤不能低于400,求銷售單價x()的取值范圍是 .(可借助二次函數(shù)的圖象直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,EAB上一點,以AE為直徑作OBC相切于點D,連接ED并延長交AC的延長線于點F

1)求證:AEAF;

2)若AE5,AC4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞點A逆時針旋轉α得到△ADEED的延長線與BC相交于點F,連接AFEC

(1)如圖,若∠BAC=α=60°

①證明:ABEC;

②證明:△DAF∽△DEC;

(2)如圖,若∠BACα,EFACG點,圖中有相似三角形嗎?如果有,請直接寫出所有相似三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=x2+k﹣1x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側.

1)如圖1,當k=1時,直接寫出A,B兩點的坐標;

2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;

3)如圖2,拋物線y=x2+k﹣1x﹣kk0)與x軸交于點CD兩點(點C在點D的左側),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,RtPAB的直角頂點P(3,4)在函數(shù)y=(x0)的圖象上,頂點A、B在函數(shù)y=(x0,0tk)的圖象上,PAx軸,連接OP,OA,記OPA的面積為SOPA,PAB的面積為SPAB,設w=SOPA﹣SPAB

求k的值以及w關于t的表達式;

若用wmax和wmin分別表示函數(shù)w的最大值和最小值,令T=wmax+a2﹣a,其中a為實數(shù),求Tmin

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坡面CD的坡比為,坡頂?shù)钠降谺C上有一棵小樹AB,當太陽光線與水平線夾角成60°時,測得小樹的在坡頂平地上的樹影BC=3米,斜坡上的樹影CD=米,則小樹AB的高是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學圍繞哈爾濱市周邊五大名山,:香爐山、鳳凰山、金龍山、帽兒山、二龍山,你最喜歡那一座山?(每名學生必選且只選一座山)的問題在全校范圍內(nèi)隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結果繪制了如圖的不完整的統(tǒng)計圖:

(1)求本次調(diào)查的樣本容量;

(2)求本次調(diào)查中,最喜歡鳳凰山的學生人數(shù),并補全條形統(tǒng)計圖;

(3)若該中學共有學生1200,請你估計該中學最喜歡香爐山的學生約有多少人?

查看答案和解析>>

同步練習冊答案