【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個(gè)點(diǎn).∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)P位于的什么位置時(shí),四邊形APBC的面積最大?求出最大面積.
【答案】(1)等邊三角形;(2)PA+PB=PC;證明見解析(3)當(dāng)點(diǎn)P為的中點(diǎn)時(shí),四邊形APBC面積最大值為
【解析】
(1)根據(jù)圓周角的定義可得圓周角相等,他們所對的弦也相等得出AC=BC,同弧所對的圓周角相等可得∠BAC=∠BPC=60°,有一個(gè)角是60°的等腰三角形是等邊三角形,可得三角形ABC為等邊三角形.(2)在PC上截取PD=PA,連接AD,得出△PAD為等邊三角形,再根據(jù)已知條件得出△PAB≌△DAC,得出PC=DC,PD+DC=PC,等量代換得出結(jié)論.(3)當(dāng)點(diǎn)P為的中點(diǎn)時(shí),四邊形APBC的面積最大.理由,如圖過點(diǎn)P作PE⊥AB,CF⊥AB垂足分別為點(diǎn)E,點(diǎn)F,四邊形APBC的面積為△APB與△ACB的和,底相同,當(dāng)PE+CF最大時(shí),四邊形的面積最大,因?yàn)橹睆绞菆A中最大的弦,即PE+CP=直徑,即P為的中點(diǎn)時(shí),面積最大.
(1)等邊三角形;
由圓周角定理得,∠ABC=∠APC=60°,∠BAC=∠CPB=60°,
∴△ABC是等邊三角形;
故答案為:等邊三角形;
(2)PA+PB=PC.
證明:如圖1,在PC上截取PD=PA, 連接AD.
∵∠APC=60°.
∴△PAD是等邊三角形.
∴PA=AD, ∠PAD=60°,
又∵∠BAC=60°,
∴∠PAB=∠DAC.
∵AB=AC.
∴△PAB≌△DAC.
∴PB=DC.
∵PD+DC=PC,
∴PA+PB=PC.
(3)當(dāng)點(diǎn)P為的中點(diǎn)時(shí),四邊形APBC面積最大.
理由如下:如圖2,過點(diǎn)P作PE⊥AB,垂足為E,
過點(diǎn)C作CF⊥AB,垂足為F.
∵S△PAB=AB·PE.S△ABC=AB·CF.
∴S四邊形APBC=AB(PE+CF).
當(dāng)點(diǎn)P為的中點(diǎn)時(shí),PE+CF=PC.PC為⊙O的直徑.
∴此時(shí)四邊形∠PAD=60°∠PAD=60°面積最大.
又∵⊙O的半徑為1,
∴其內(nèi)接正三角形的邊長AB=.
∴S四邊形APBC=×2×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____.(答案用根號(hào)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)畫片《小豬佩奇》風(fēng)靡全球,受到孩子們的喜愛,現(xiàn)有4張(小豬佩奇)角色卡片,分別是A佩奇.B喬治.C佩奇媽媽.D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同)姐弟兩人做游戲,他們講這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機(jī)抽取一張,求恰好抽到A佩奇的概率;
(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的方法求出恰好姐姐抽到A佩奇,弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)為對角線上異于點(diǎn)的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),將沿所在的直線翻折,使得點(diǎn)落在點(diǎn)的位置
(1)當(dāng)時(shí),求點(diǎn)到直線的距離。
(2)聯(lián)結(jié)交于,求當(dāng)和相似時(shí),線段的長。
(3)當(dāng)時(shí),請直接寫出此時(shí)的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,有一直徑為CD的半圓,圓心為點(diǎn)O,CD=2,現(xiàn)有兩點(diǎn)E、F,分別從點(diǎn)A、點(diǎn)C同時(shí)出發(fā),點(diǎn)E沿線段AD以每秒1個(gè)單位長度的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)F沿線段CB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)E離開點(diǎn)A的時(shí)間為t(s),回答下列問題:
(1)如圖①,根據(jù)下列條件,分別求出t的值.
①EF與半圓相切;
②△EOF是等腰三角形.
(2)如圖②,點(diǎn)P是EF的中點(diǎn),Q是半圓上一點(diǎn),請直接寫出PQ+OQ的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接寫出點(diǎn)B的坐標(biāo)是 ;
(2)如果拋物線l:y=ax2﹣ax﹣2經(jīng)過點(diǎn)B,試求拋物線l的解析式;
(3)把△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后,頂點(diǎn)A的對應(yīng)點(diǎn)A1是否在拋物線l上?為什么?
(4)在x軸上方,拋物線l上是否存在一點(diǎn)P,使由點(diǎn)A,C,B,P構(gòu)成的四邊形為中心對稱圖形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家水果店以每斤6元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤12元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出10斤.為保證每天至少售出360斤,水果店決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利1200元,那么水果店需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的A型、B型、C型矩形紙片分別放在3個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個(gè)盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出1個(gè)盒子,求摸出的盒子中是型矩形紙片的概率;
(2)攪勻后先從中摸出1個(gè)盒子(不放回),再從余下的兩個(gè)盒子中摸出一個(gè)盒子,求2次摸出的盒子的紙片能拼成一個(gè)新矩形的概率(不重疊無縫隙拼接).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com