【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)利用ASA判定Rt△DFB≌Rt△DAC,從而得出BF=AC.
(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,再由BF=AC,利用等量代換即可得結(jié)論.
(1)∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形,
∴BD=CD,
∵CD⊥AB,BE⊥AC,
∴∠BDC=∠CDA=90°,∠BEC=∠BEA=90°,
∴∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,
又∵∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
,
∴Rt△DFB≌Rt△DAC(ASA),
∴BF=AC;
(2)∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
,
∴Rt△BEA≌Rt△BEC(ASA),
∴CE=AE,
∵CE+AE=AC,
∴CE=AC,
又由(1)知BF=AC,
∴CE=BF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后, 能被x0+3整除,…,能被x0+n﹣1整除,則稱這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.
例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個(gè)“輪換數(shù)”;
再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個(gè)一個(gè)“輪換數(shù)”.
(1)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,求證這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.
(2)若三位自然數(shù)是3的一個(gè)“輪換數(shù)”,其中a=2,求這個(gè)三位自然數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
(2)如圖2,當(dāng)a=30°時(shí),試判斷四邊形BC1DA的形狀,并證明.
(3)在(2)的條件下,求線段DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)C在AB的延長線上.
(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,AC的長為__.
(2)如圖2,若BC=AB,過O,B,C三點(diǎn)的拋物線L3,頂點(diǎn)為P,開口向下,對應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3, =__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.
(1)求證:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級收費(fèi)制,即每月用水量不超過14噸(含14噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過14噸時(shí),超過部分每噸按市場調(diào)節(jié)價(jià)收費(fèi),小英家1月份用水20噸,交水費(fèi)29元;2月份用水18噸,交水費(fèi)24元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場調(diào)節(jié)價(jià)分別是多少?
(2)小英家3月份用水24噸,她家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=45°,P為∠MON內(nèi)一點(diǎn),A為OM上一點(diǎn),B為ON上一點(diǎn),當(dāng)PAB的周長取最小值時(shí),∠APB的度數(shù)為( )
A.80°B.90°C.110°D.120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com