【題目】如圖,二次函數(shù)的圖象經(jīng)過點,與軸交于點,且與軸交點的橫坐標分別為,其中,,下列結論:;②;③;④.其中正確的有(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

由圖可知當x=-2時,函數(shù)值y<0,可判斷;由圖可知對稱軸x=>-1,可判斷②;點可知c=2,由點與點關于對稱軸對稱可得對稱軸x==,解得a=b,再由圖可知,當x=1,y<0,可判斷③;由圖可知,頂點縱坐標值大于2,據(jù)此可判斷④.

由圖可知當x=-2時,函數(shù)值y=<0,故正確;由圖可知對稱軸x=>-1,解得,正確;由點可知c=2,由點與點關于對稱軸對稱可得對稱軸x==,解得a=b,由圖可知,當x=1,y=a+b+2=2a+2<0,解得a<-1,正確;由圖可知,,解得,正確.

①②③④均正確,故選擇D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.

(1)請判斷四邊形AEA′F的形狀,并說明理由;

(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把半徑為的圓周按分割為三段.則最短的弧所對的圓心角為________,該弧和半徑圍成的扇形的面積為________,最長的弧所對的圓周角為________,最長的弧長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A(0,4)、B(-4,4)、C(-6,2),請在網(wǎng)格圖中進行如下操作:

(1)利用網(wǎng)格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);

(2)連接AD、CD,則D的半徑為_ __(結果保留根號),ADC的度數(shù)為_ __;

(3)若扇形DAC是一個圓錐的側面展開圖,求該圓錐底面半徑.(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在之間,其部分圖象如圖所示.則下列結論:;②;③;④為實數(shù));,,是該拋物線上的點,則,正確的個數(shù)有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于點A(10),頂點坐標是(1n),與y軸的交點在(0,3)(0,6)之間(包含端點),則下列結論錯誤的是( )

A.3a+b0B.2≤a≤lC.abc0D.9a+3b+2c0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小左同學想利用影長測量學校旗桿的高度,如圖,她在某一時刻立一長度為1米的標桿,測得其影長為米,同時旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請幫小左同學算出學校旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結BDx軸于點C,且∠COD=CBO.

(1)求⊙M的半徑;

(2)求證:BD平分∠ABO;

(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標.

查看答案和解析>>

同步練習冊答案