【題目】如圖,四邊形OABC為矩形,點(diǎn)A,C分別在x軸和y軸上,連接AC,點(diǎn)B的坐標(biāo)為(8,6),以A為圓心,任意長為半徑畫弧,分別交AC、AO于點(diǎn)MN,再分別以MN為圓心,大于MN長為半徑畫弧兩弧交于點(diǎn)Q,作射線AQy軸于點(diǎn)D,則點(diǎn)D的坐標(biāo)為(  )

A. B. C. D.

【答案】B

【解析】

過點(diǎn)DDEAC于點(diǎn)E,由勾股定理可求AC=10,由“AAS”可證△ADO≌△ADE,可證AE=AO=8,OD=DE,可得CE=2,由勾股定理可求OD的長,即可求點(diǎn)D坐標(biāo).

解:如圖,過點(diǎn)DDEAC于點(diǎn)E

∵四邊形OABC為矩形,點(diǎn)B的坐標(biāo)為(86),

OA=8,OC=6

AC==10

由題意可得AD平分∠OAC

∴∠DAE=DAO,AD=AD,∠AOD=AED=90°

∴△ADO≌△ADEAAS

AE=AO=8,OD=DE

CE=2,

CD2=DE2+CE2

∴(6-OD2=4+OD2,

OD=

∴點(diǎn)D0,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電子政務(wù)、數(shù)字經(jīng)濟(jì)、智慧社會一場數(shù)字革命正在神州大地激蕩.在第二屆數(shù)字中國建設(shè)峰會召開之際,某校舉行了第二屆掌握新技術(shù),走進(jìn)數(shù)時代信息技術(shù)應(yīng)用大賽,將該校八年級參加競賽的學(xué)生成績統(tǒng)計(jì)后,繪制成如下統(tǒng)計(jì)圖表(不完整):

掌握新技術(shù),走進(jìn)數(shù)時代信息技術(shù)應(yīng)用大賽成績頻數(shù)分布統(tǒng)計(jì)表

組別

成績x(分)

人數(shù)

A

60≤x70

10

B

70≤x80

m

C

80≤x90

16

D

90≤x≤100

4

請觀察上面的圖表,解答下列問題:

1)統(tǒng)計(jì)表中m   ;統(tǒng)計(jì)圖中n   ,D組的圓心角是   度.

2D組的4名學(xué)生中,有2名男生和2名女生.從D組隨機(jī)抽取2名學(xué)生參加5G體驗(yàn)活動,請你畫出樹狀圖或用列表法求:

①恰好1名男生和1名女生被抽取參加5G體驗(yàn)活動的概率;

②至少1名女生被抽取參加5G體驗(yàn)活動的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,(k+12k2+2k+1,變形得:(k+12k22k+1,對上面的等式,依次令k1,23,得:

1個等式:22122×1+1

2個等式:32222×2+1

3個等式:42322×3+1

1)按規(guī)律,寫出第n個等式(用含n的等式表示):第n個等式   

2)記S11+2+3+…+n,將這n個等式兩邊分別相加,你能求出S1的公式嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E,F分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點(diǎn)B,C分別落在點(diǎn)B′C′處,線段EC′與線段AF交于點(diǎn)G,連接DG,B′G

求證:(1∠1=∠2 2DG=B′G

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y1=-x+4,y2=x+b都與雙曲線y=交于點(diǎn)A1m),這兩條直線分別與x軸交于BC兩點(diǎn)

1)求k的值;

2)直接寫出當(dāng)x0時,不等式x+b的解集;

3)若點(diǎn)Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,求此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用因式分解法解下列方程;

x+229=0

2x32=32x3

③x26x+9=0

x+5)(x1=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中條直線為,直線軸于點(diǎn),交軸于點(diǎn),直線軸于點(diǎn),過點(diǎn)軸的平行線交于點(diǎn),點(diǎn)關(guān)于軸對稱,拋物線三點(diǎn),下列判斷中:①;②;③拋物線關(guān)于直線對稱;④拋物線過點(diǎn);⑤四邊形,其中正確的個數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組請結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_______________;

(Ⅱ)解不等式②,得_______________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為______________.

查看答案和解析>>

同步練習(xí)冊答案