【題目】如圖,在四邊形ABCD中,∠ABC90°,DEAC于點E,且AECE,DE5EB12

1)求AD的長;

2)若∠CAB30°,求四邊形ABCD的周長.

【答案】(1)13;(238+

【解析】

1)根據(jù)等腰三角形的性質(zhì)和勾股定理即可得到結(jié)論;
2)解直角三角形求出各邊的長,于是得到結(jié)論.

解:(1)∵∠ABC90°,AECE,EB12

EBAECE12

DEAC,DE5

∴在Rt△ADE中,

由勾股定理得AD13;

2)∵在Rt△ABC中,∠CAB30°,ACAE+CE24,

BC12,ABACcos30°=,

DEAC,AECE,

ADDC13,

∴四邊形ABCD的周長為AB+BC+CD+AD38+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1所示,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC30cm

1)如圖2,當∠BAC24°時,CDAB,求支撐臂CD的長.

2)如圖3,當∠BAC12°,求AD的長(結(jié)果保留根號).

[參考數(shù)據(jù):sin24°0.40,cos24°0.91tan24°0.46,sin12°0.20]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的函數(shù),自變量的取值范圍是的全體實數(shù),如表是的幾組對應值.

小華根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:

1)從表格中讀出,當自變量是﹣2時,函數(shù)值是   

2)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

3)在畫出的函數(shù)圖象上標出時所對應的點,并寫出   

4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于O,ABAC,∠ABC72°,過點ABC的平行線與∠ABC的平分線交于點D,BDAC于點E,交O于點F,連接AF

1)求證:ADO的切線;

2)已知BC2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線相交于點

求雙曲線的表達式;

過動點且垂直于x軸的直線與直線及雙曲線的交點分別為BC,當點B位于點C下方時,求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,過原點O的直線l1與雙曲線的一個交點為A1,m).

1)求直線l1的表達式;

2)過動點Pn,0)(n0)且垂直于x軸的直線與直線l1和雙曲線的交點分別為BC,當點B位于點C上方時,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年農(nóng)歷五月初五為端午節(jié),中國民間歷來有端午節(jié)吃粽子、賽龍舟的習俗.某班同學為了更好地了解某社區(qū)居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區(qū)居民進行了隨機抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

分析圖中信息,本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為________;若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ADBC于點D,點EAC邊的中點,過點AAFBC,交DE的延長線于點F,連接CF

1)如圖1,求證:四邊形ADCF是矩形;

2)如圖2,當ABAC時,取AB的中點G,連接DGEG,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形ADCF).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(3,1),C(3,3).反比例函數(shù)y= (x>0)的圖像經(jīng)過點D,P是一次函數(shù)y=kx+3-3k(k≠0)的圖像與該反比例函數(shù)圖像的一個公共點.

(1)求反比例函數(shù)的表達式;

(2)通過計算說明一次函數(shù)y=kx+3-3k(k≠0)的圖像一定經(jīng)過點C;

(3)對于一次函數(shù)y=kx+3-3k(k≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍(不必寫出過程).

查看答案和解析>>

同步練習冊答案