【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠ABC=72°,過(guò)點(diǎn)A作BC的平行線(xiàn)與∠ABC的平分線(xiàn)交于點(diǎn)D,BD交AC于點(diǎn)E,交⊙O于點(diǎn)F,連接AF.
(1)求證:AD是⊙O的切線(xiàn);
(2)已知BC=2,求EF的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)連接AO,OB,求出∠OAD=90°即可;
(2)證得△AEF≌△BCE,得出EF=CE,設(shè)EF=EC=x,則AC=2+x,證得△ABC∽△BEC,根據(jù)相似三角形的性質(zhì)得出關(guān)于x的方程,解方程即可.
(1)證明:連接AO、BO、CO,
∵AB=AC,∠ABC=72°,
∴∠ABC=∠ACB=72°,
∴∠BAC=36°,
在△ABO和△ACO中
,
∴△ABO≌△ACO(SSS),
∴∠OAC=∠BAC=18°,
∵AD∥BC,
∴∠DAC=∠ACB=72°,
∴∠OAD=∠OAC+∠DAC=18°+72°=90°,
∴AD是⊙O的切線(xiàn);
(2)解:∵∠BAC=∠ABD=36°,
∴AE=BE,
∵∠DBC=36°∠ACB=72°,
∴∠BEC=72°,
∴BE=BC=2,
∴AE=BC,
在△BCE和△AFE中
,
∴△AEF≌△BCE(AAS),
∴EF=CE,
設(shè)EF=EC=x,則AC=2+x,
∵∠ABC=∠BEC=72°,∠ACB=∠BCE,
∴△ABC∽△BEC,
∴=,即=,
解得x=﹣1或﹣1﹣(舍去),
∴EF=﹣1.
故答案為:(1)詳見(jiàn)解析;(2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線(xiàn)y=ax2﹣x+2(a≠0)與線(xiàn)段MN有兩個(gè)不同的交點(diǎn),則a的取值范圍是( 。
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們?cè)O(shè)計(jì)了一個(gè)重復(fù)拋擲的實(shí)驗(yàn):全班48人分為8個(gè)小組,每組拋擲同一型號(hào)的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計(jì)各小組的實(shí)驗(yàn)結(jié)果.
1組 | 1~2組 | 1~3組 | 1~4組 | 1~5組 | 1~6組 | 1~7組 | 1~8組 | |
蓋面朝上次數(shù) | 165 | 335 | 483 | 632 | 801 | 949 | 1122 | 1276 |
蓋面朝上頻率 | 0.550 | 0.558 | 0.537 | 0.527 | 0.534 | 0.527 | 0.534 | 0.532 |
根據(jù)實(shí)驗(yàn),你認(rèn)為這一型號(hào)的瓶蓋蓋面朝上的概率為____,理由是:____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線(xiàn)交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+1分別交x軸、y軸于點(diǎn)A、C,點(diǎn)B是點(diǎn)A關(guān)于y的對(duì)稱(chēng)點(diǎn),點(diǎn)D是線(xiàn)段BC上一點(diǎn),把△ABD沿AD翻折使AB落在射線(xiàn)AC上,得△AB'D,則△ABC與△AB'D重疊部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)表達(dá)式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+的圖象性質(zhì).
(1)結(jié)合問(wèn)題情境,函數(shù)y=x+ 的自變量x的取值范圍是x>0,下表是y與x的幾組對(duì)應(yīng)值.
① 寫(xiě)出m的值;
②畫(huà)出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x=________時(shí),y有最小值,y最小=________;
提示:在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r(shí),除了通過(guò)觀(guān)察圖象,還可以通過(guò)配方得到.試用配方法求函數(shù)y=x+ (x>0)的最小值,解決問(wèn)題(2).
(2)【解決問(wèn)題】
直接寫(xiě)出“問(wèn)題情境”中問(wèn)題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,DE⊥AC于點(diǎn)E,且AE=CE,DE=5,EB=12.
(1)求AD的長(zhǎng);
(2)若∠CAB=30°,求四邊形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,0)和點(diǎn)B(4,5).
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式.
(2)求直線(xiàn)AB關(guān)于x軸對(duì)稱(chēng)的直線(xiàn)的函數(shù)表達(dá)式.
(3)點(diǎn)P是x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線(xiàn)l,直線(xiàn)l與該拋物線(xiàn)交于點(diǎn)M,與直線(xiàn)AB交于點(diǎn)N.當(dāng)PM < PN時(shí),求點(diǎn)P的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A,B,與y軸交于點(diǎn)C(0,2),直線(xiàn)經(jīng)過(guò)點(diǎn)A,C.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為直線(xiàn)AC上方拋物線(xiàn)上一動(dòng)點(diǎn);
①連接PO,交AC于點(diǎn)E,求的最大值;
②過(guò)點(diǎn)P作PF⊥AC,垂足為點(diǎn)F,連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB的2倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com