【題目】解方程:

(1)2(x-2)-3(4x-1)=9(1-x); (2) ;

(3) ; (4) ;

(5) .

【答案】(1)x=-10,(2)x=-1,(3)x=3,(4)x=2,(5) x=.

【解析】

(1)方程去括號,移項合并,把x系數(shù)化為1,即可求出解;

(2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解;

(3)先把方程中的分母化為整數(shù),去括號,移項合并,把x系數(shù)化為1,即可求出解;

(4)方程去括號,移項合并,把x系數(shù)化為1,即可求出解;

(56)方程整理后,去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.

(1)去括號,得2x-4-12x+3=9-9x,

移項合并同類項,得-x=10,

兩邊同時除以-1,得x=-10.

(2)去分母,得2(2x-1)-(5x+2)=3(1-2x)-12,

去括號,移項合并同類項得5x=-5,

兩邊同時除以5,得x=-1.

(3)去括號,得2x+1+6-1=4x,

移項合并同類項,得2x=6,

兩邊同時除以2,得x=3.

(4)原方程可化為5(x-4)-10=20(x-3),

去括號,得5x-20-10=20x-60,

移項,合并同類項得-15x=-30,

兩邊同時除以-15,得x=2.

(5)原方程可化為:8x-5(1-0.2x)=100(0.1+0.02x),

去括號,得8x-5+x=10+2x,

移項合并同類項,得7x=15,

兩邊同時除以7,得x=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄的是今年長江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達(dá)到警戒水位米(正號表示水位比前一天上升,負(fù)號表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=∠C,AD∥BC.

(1)證明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標(biāo)為(3,0)
(1)求m的值及拋物線的頂點坐標(biāo).
(2)點P是拋物線對稱軸l上的一個動點,當(dāng)PA+PC的值最小時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BCAF于點C,∠A+∠190°.

1)求證:ABDE;

2)如圖2,點P從點A出發(fā),沿線段AF運(yùn)動到點F停止,連接PBPE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關(guān)系(不考慮點P與點A,D,C重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,﹣1),B(0,3),點M為第二象限內(nèi)一點,且點M的坐標(biāo)為(t,1).

(1)請用含t的式子表示△ABM的面積;

(2)當(dāng)t=﹣2時,在x軸的正半軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點PAD邊上以每秒1cm的速度從點A向點D運(yùn)動,點QBC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運(yùn)動,兩個點同時出發(fā),當(dāng)點P到達(dá)點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案