【題目】在平面直角坐標(biāo)系xOy中,A4,0),B04),CD是△AOB的中位線.若將△COD繞點(diǎn)O旋轉(zhuǎn),得到△COD′,射線AC′與射線BD′的交點(diǎn)為P

1)∠APB的度數(shù)是_____°.

2)在旋轉(zhuǎn)過程中,記P點(diǎn)橫坐標(biāo)為m,則m的取值范圍是_____

【答案】90°;

【解析】

1)由SAS證得BOD'AOC',可得∠C'AO=D'BO,因?yàn)椤?/span>BMP=AMO,可得∠APB=AOB=90°

2)點(diǎn)PAB為直徑的⊙M上運(yùn)動,過MPMOA交⊙M于點(diǎn)P(在點(diǎn)M的左側(cè)),此時(shí)m的值最;當(dāng)BD′與⊙O相切時(shí),m最大,分別求出對應(yīng)m的值,即可得出m的取值范圍.

1)如圖1

A4,0),B04),

OA=OB,∠AOB=90°

CDAOB的中位線,

CO=DO=2=BD=AC

∵將COD繞點(diǎn)O旋轉(zhuǎn),得到C′OD′

CO=DO,∠C'OD'=90°=AOB,

∴∠BOD'=AOC',且C'O=D'O,AO=BO,

∴△BODAOC'SAS

∴∠C'AO=D'BO,

∵∠BMP=AMO,

∴∠APB=AOB=90°,

故答案為:90,

2)如圖2,

∵∠BPA=90°,

∴點(diǎn)PAB為直徑的⊙M上運(yùn)動,

MPMOA交⊙M于點(diǎn)P(在點(diǎn)M的左側(cè)),此時(shí)m的值最小,

AB=4DM=2,

PD=22

m22

如圖3,

OD′=OC′=2

∴點(diǎn)D′,點(diǎn)C′在⊙O上運(yùn)動,

當(dāng)BD′與⊙O相切時(shí),m最大,

此時(shí)BD′=D′P=OC′=2

BP=2+2,

OB4,OD′=2,

sinOBD′=,

m=BP+1

22≤m≤+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。

①B地在C地的北偏西50°方向上;

②A地在B地的北偏西30°方向上;

③cos∠BAC=;

④∠ACB=50°.其中錯誤的是( 。

A. ①② B. ②④ C. ①③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如表:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離(千米)與時(shí)間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn),點(diǎn)坐標(biāo)為,曲線可用二次函數(shù),是常數(shù))刻畫.

(1)求的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時(shí)間?(潮水加速階段速度,是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)ymx2+(5m+3x+4mm為常數(shù)且m0)有以下三種說法:

①不論m為何值,函數(shù)圖象一定過定點(diǎn)(﹣1,﹣3);

②當(dāng)m=﹣1時(shí),函數(shù)圖象與坐標(biāo)軸有3個(gè)交點(diǎn);

③當(dāng)m0,x≥﹣時(shí),函數(shù)yx的增大而減小;判斷真假,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每天可賣出190件;如果每件商品的售價(jià)每上漲1元,則每天少賣10件,設(shè)每件商品的售價(jià)上漲x元,每天的銷售利潤為y元.

1)求y關(guān)于x的關(guān)系式;

2)每件商品的售價(jià)定為多少元時(shí),每天的利潤恰為1980元?

3)每件商品的售價(jià)定為多少元時(shí),每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD,邊長等于2,點(diǎn)EF、GH分別是AB、BC、CD、DA的中點(diǎn),圖中陰影部分由四個(gè)小扇形組成,對于下列判斷中正確的有(

①空白圖形空白部分的周長=2 ②空白部分的面積=

③四個(gè)小扇形的面積和 = ④菱形的面積=4

A 1個(gè) B 2個(gè) C 3個(gè) D 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太原雙塔寺又名永祚寺,是國家級文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為文筆雙塔,是太原的標(biāo)志性建筑之一,某校社會實(shí)踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測得EC4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測得FG6米,GC53米.

請你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)將△ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對應(yīng)點(diǎn)P的坐標(biāo)

(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直接寫出點(diǎn)A的對應(yīng)點(diǎn)Q的坐標(biāo)

(3)請直接寫出:以AB、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案