【題目】如圖,等邊三角形的邊長為,點(diǎn)為上的一點(diǎn),點(diǎn)為上的一點(diǎn),
連結(jié)、,.
求證:①;②;
若,求和的長.
【答案】(1) ①見解析; ②見解析;(2),.
【解析】
(1)①由△ABC為等邊三角形,可得∠B=∠C=60°,又∠APD=60°,由三角形外角的性質(zhì)可得∠DPC=∠PAB,根據(jù)兩角對應(yīng)相等的兩個(gè)三角形相似即可得△ABP∽△PCD;②利用兩角對應(yīng)相等的兩個(gè)三角形相似證明△ADP∽△APC,根據(jù)相似三角形的性質(zhì)即可證得結(jié)論;(2)由(1)知△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)可得AB:PC=BP:CD,代入數(shù)據(jù)求得CD的長,即可得AD的長,再利用AP2=ADAC求得AP的長即可.
證明:①在等邊三角形中,,
∵,,
∴,
∴;
②∵,,
∴,
∴,
∴;解:∵,,
∴,
∴,
∴,
∵等邊三角形的邊長為,,,
,,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量與時(shí)間成正比例,藥物燃燒完后,與成反比例(如圖所示).現(xiàn)測得藥物燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為.研究表明,當(dāng)空氣中每立方米的含藥量不低于才有效,那么此次消毒的有效時(shí)間是( )
A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中AD∥BC,邊AB=4,BC=8.將此長方形沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)G處.
(1)試判斷△BEF的形狀,并說明理由;
(2)若AE=3,求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為 1 的正方形組成的網(wǎng)格中,△ ABC的頂點(diǎn)均在格點(diǎn)上,A(3,2), B(4, 3), C(1, 1)
(1)畫出△ABC關(guān)于y軸對稱的圖形△ A′B′C′
(2)寫出A′、B′、C′的坐標(biāo)(直接寫出答案) A′ ;B′ ;C′ ;
(3)寫出△ A′B′C′的面積為 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售某種玩具,進(jìn)貨價(jià)為元.根據(jù)市場調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是元時(shí),銷售量是件,而銷售單價(jià)每上漲元,就會(huì)少售出件玩具,超市要完成不少于件的銷售任務(wù),又要獲得最大利潤,則銷售單價(jià)應(yīng)定為________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(diǎn) (-3,0),(2,-5).
(1)試確定此二次函數(shù)的解析式;
(2)請你判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理過程:
如圖所示,點(diǎn)E在外部,點(diǎn)D在BC邊上,DE交AC于F,若,,
求證:.
證明:∵(已知),
(________________),
∴(________________),
又∵,
∴________________(________),
即,
在和中
(已證)
∵(已知)
(已證)
∴(________).
∴(________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),線段OA上的動(dòng)點(diǎn)M(與O,A不重合)從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng)。
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)當(dāng)t何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com