【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(diǎn) (-3,0),(2,-5).

(1)試確定此二次函數(shù)的解析式;

(2)請(qǐng)你判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?

【答案】(1)y=﹣x2﹣2x+3;(2)點(diǎn)P(﹣2,3)在這個(gè)二次函數(shù)的圖象上,

【解析】

(1)根據(jù)給定點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式即可;
(2)代入x=-2求出y值,將其與3比較后即可得出結(jié)論.

(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+3;

∵二次函數(shù)的圖象經(jīng)過點(diǎn)(﹣3,0),(2,﹣5),則有:

解得;

y=﹣x2﹣2x+3.

(2)把x=-2代入函數(shù)得y=﹣(﹣2)2﹣2×(﹣2)+3=﹣4+4+3=3,

∴點(diǎn)P(﹣2,3)在這個(gè)二次函數(shù)的圖象上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)四個(gè)層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了   名學(xué)生;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)分別求出安全意識(shí)為淡薄的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比、安全意識(shí)為很強(qiáng)的學(xué)生所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)GEFBCABE,交ACF,過點(diǎn)GGDACD,下列四個(gè)結(jié)論:

EFBE+CF;②∠BGC90°+A;③點(diǎn)G到△ABC各邊的距離相等;④設(shè)GDmAE+AFn,則SAEFmn.其中正確的結(jié)論有( 。

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長為,點(diǎn)上的一點(diǎn),點(diǎn)上的一點(diǎn),

連結(jié)、

求證:①;;

,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2的圖象上,則a的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在等腰直角三角形中,,的中點(diǎn),且,垂足為點(diǎn),過點(diǎn)的延長線于點(diǎn),聯(lián)結(jié).

1)求證:

2)連接,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的平均數(shù),我們稱這個(gè)三位數(shù)為“順子數(shù)”,例如:630,123.

如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的積的算術(shù)平方根,我們稱這個(gè)三位數(shù)為“和諧數(shù)”,例如:139,124.

(1)若三位數(shù)是“順子數(shù)”,且各位數(shù)字之和大于7小于10,且百位數(shù)字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有實(shí)數(shù)根,求這個(gè)“順子數(shù)”;

(2)若三位數(shù)既是“順子數(shù)”又是“和諧數(shù)”,請(qǐng)?zhí)剿鱝,b,c三者的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知外切于,的外公切線,,為切點(diǎn),若,,則的距離是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖②中四對(duì)全等的直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案