【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點(diǎn),將△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)E落在CB的延長(zhǎng)線(xiàn)上點(diǎn)F處,點(diǎn)C落在點(diǎn)A處.再將線(xiàn)段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線(xiàn)段FG,連結(jié)EF、CG.

(1)求證:EFCG

(2)求點(diǎn)C、點(diǎn)A在旋轉(zhuǎn)過(guò)程中形成的與線(xiàn)段CG所圍成的陰影部分的面積.

【答案】(1)證明見(jiàn)解析;(2) S陰影.

【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可得AB=BC=AD=2,ABC=90°再根據(jù)旋轉(zhuǎn)變化只改變圖形的位置不改變圖形的形狀可得ABFCBE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得FAB=∠ECB,ABF=∠CBE=90°,全等三角形對(duì)應(yīng)邊相等可得AF=EC然后求出AFB+∠FAB=90°,再求出CFG=∠FAB=∠ECB,根據(jù)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行可得ECFG再根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形判斷出四邊形EFGC是平行四邊形,然后根據(jù)平行四邊形的對(duì)邊平行證明;

2)求出FE、BE的長(zhǎng)再利用勾股定理列式求出AF的長(zhǎng),根據(jù)平行四邊形的性質(zhì)可得FECCGF全等,從而得到SFEC=SCGF,再根據(jù)S陰影=S扇形BAC+SABF+SFGCS扇形FAG列式計(jì)算即可得解.

試題解析:(1)證明在正方形ABCD,AB=BC=AD=2,ABC=90°∵△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到ABF,∴△ABF≌△CBE∴∠FAB=∠ECB,ABF=∠CBE=90°AF=CE∴∠AFB+∠FAB=90°線(xiàn)段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線(xiàn)段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,ECFGAF=CE,AF=FG,EC=FG四邊形EFGC是平行四邊形,EFCG;

2)解AD=2EAB的中點(diǎn),BF=BE=AB=×2=1AF===,由平行四邊形的性質(zhì)FEC≌△CGF,SFEC=SCGF,S陰影=S扇形BAC+SABF+SFGCS扇形FAG=

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC,O ABC 所在平面內(nèi)的一點(diǎn),連接 OB、OC,將∠ABO、∠ACO分別記為∠1、∠2

(1)如圖(1),當(dāng)點(diǎn) O 在圖中所示的位置時(shí),∠1+∠2+∠A+∠O

(2)如圖(2),當(dāng)點(diǎn) O ABC 的內(nèi)部時(shí),∠1、∠2、∠A、∠OC四個(gè)角之間滿(mǎn)足怎樣 的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的結(jié)論并說(shuō)明理由;

(3)當(dāng)點(diǎn) O ABC 所在平面內(nèi)運(yùn)動(dòng)時(shí)(點(diǎn) O 不在三邊所在的直線(xiàn)上),由于所處的位 置不同,∠1、∠2、∠A、∠OC四個(gè)角之間滿(mǎn)足的數(shù)量關(guān)系還存在著與(1)、(2) 中不同的結(jié)論,請(qǐng)?jiān)趫D(3)中畫(huà)出一種不同的示意圖,并直接寫(xiě)出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,甲、乙兩車(chē)分別從相距480kmA、B兩地相向而行,乙車(chē)比甲車(chē)先出發(fā)1小時(shí),并以各自的速度勻速行駛,甲車(chē)到達(dá)C地后因有事按原路原速返回A地.乙車(chē)從B地直達(dá)A地,兩車(chē)同時(shí)到達(dá)A地.甲、乙兩車(chē)距各自出發(fā)地的路程y(千米)與甲車(chē)出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖2,結(jié)合圖象信息解答下列問(wèn)題:

(1)乙車(chē)的速度是   千米/時(shí),乙車(chē)行駛的時(shí)間t=   小時(shí);

(2)求甲車(chē)C地按原路原速返回A地的過(guò)程中,甲車(chē)距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式;

(3)直接寫(xiě)出甲車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距80千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的頂點(diǎn)A在原點(diǎn),B、C坐標(biāo)分別為B(3,0),C(2,2),ABC向左平移1個(gè)單位后再向下平移2單位,可得到A′B′C′.

(1)請(qǐng)畫(huà)出平移后的A′B′C′的圖形;

(2)寫(xiě)出A′B′C′各個(gè)頂點(diǎn)的坐標(biāo);

(3)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線(xiàn)上,點(diǎn)C在⊙O上,AC=CD,ACD=120°

1)求證:CD是⊙O的切線(xiàn);

2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.

1)求n的值;

2)若FDE的中點(diǎn),判斷四邊形ACFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.作DEAC交邊ABBC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(s).

(1)求AC的長(zhǎng).

(2)請(qǐng)用含t的代數(shù)式表示線(xiàn)段DE的長(zhǎng).

(3)當(dāng)點(diǎn)F在邊BC上時(shí),求t的值.

(4)設(shè)正方形DEFGABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線(xiàn)ABx軸相交于點(diǎn)C,ADx軸于點(diǎn)D.

(1)m=  ;

(2)求點(diǎn)C的坐標(biāo);

(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沙坪壩區(qū)2017年已經(jīng)成功創(chuàng)建國(guó)家衛(wèi)生城區(qū),現(xiàn)在正全力爭(zhēng)創(chuàng)全國(guó)文明城區(qū)(簡(jiǎn)稱(chēng)創(chuàng)文),某街道積極響應(yīng)創(chuàng)文活動(dòng),投入一定資金用于綠化一塊閑置空地,購(gòu)買(mǎi)了甲、乙兩種樹(shù)木共72棵,其中甲種樹(shù)木每棵90元,乙種樹(shù)木每棵80元,共用去資金6160.

1)求甲、乙兩種樹(shù)木各購(gòu)買(mǎi)了多少棵?

2)經(jīng)過(guò)一段時(shí)間后,種植的這批樹(shù)木成活率高,綠化效果好,該街道決定再購(gòu)買(mǎi)一批這兩種樹(shù)木綠化另一塊閑置空地,兩種樹(shù)木的購(gòu)買(mǎi)數(shù)量均與第一批相同,購(gòu)買(mǎi)時(shí)發(fā)現(xiàn)甲種樹(shù)木單價(jià)上漲了,乙種樹(shù)木單價(jià)下降了,且總費(fèi)用不超過(guò)6804元,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案