【題目】已知函數(shù)是關(guān)于的二次函數(shù).
(1)求的值.
(2)當(dāng)為何值時(shí),該函數(shù)圖象的開(kāi)口向下?
(3)當(dāng)為何值時(shí),該函數(shù)有最小值?
【答案】(1)或;(2)為時(shí),函數(shù)圖象開(kāi)口向下;(3)為時(shí),函數(shù)有最小值
【解析】
(1)由二次函數(shù)的定義可得到關(guān)于m的方程,可求得m的值;
(2)由二次項(xiàng)系數(shù)小于0開(kāi)口向下,可求得m的值;
(3)由二次項(xiàng)系數(shù)大于0時(shí),可知函數(shù)有最小值,可求得m的值.
(1)∵y=(m+3)是關(guān)于x的二次函數(shù),∴m2﹣3m﹣26=2且m+3≠0,解得:m=7或m=﹣4.
答:m的值為7或﹣4.
(2)當(dāng)m=﹣4時(shí),m+3=﹣1<0,函數(shù)圖象開(kāi)口向下,∴當(dāng)m為﹣4時(shí),函數(shù)圖象開(kāi)口向下;
(3)當(dāng)m=7時(shí),m+3=10>0,函數(shù)圖象開(kāi)口向上,函數(shù)有最小值,∴當(dāng)m為7時(shí),函數(shù)有最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào)).
①cos(-60°)=—cos60°=
②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=
③sin2x=sin(x+x)=sinx·cosx+cosx·sinx=2sinx·cosx;
④sin(x-y)=sinx·cosy-cosx·siny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市區(qū)九年級(jí)學(xué)生每天的健身活動(dòng)情況,隨機(jī)從市區(qū)九年級(jí)的12000名學(xué)生中抽取了500名學(xué)生,對(duì)這些學(xué)生每天的健身活動(dòng)時(shí)間進(jìn)行統(tǒng)計(jì)整理,作出了如下不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)含最小值不含最大值,統(tǒng)計(jì)數(shù)據(jù)全部為整數(shù)),請(qǐng)根據(jù)以下信息解答如下問(wèn)題:
時(shí)間/分 | 頻數(shù) | 頻率 |
30~40 | 25 | 0.05 |
40~50 | 50 | 0.10 |
50~60 | 75 | b |
60~70 | a | 0.40 |
70~80 | 150 | 0.30 |
(1)a=_______,b=_______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)學(xué)生每天健身時(shí)間的中位數(shù)會(huì)落在哪個(gè)時(shí)間段?
(4)若每天健身時(shí)間在60分鐘以上為符合每天“陽(yáng)光一小時(shí)”的規(guī)定,則符合規(guī)定的學(xué)生人數(shù)大約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料會(huì)暢銷、先用1800元購(gòu)進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購(gòu)進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若兩次進(jìn)飲料都按同一價(jià)格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)、兩種機(jī)械設(shè)備,每臺(tái)種設(shè)備的成本是種設(shè)備的1.5倍,公司若投入16萬(wàn)元生產(chǎn)種設(shè)備,36萬(wàn)元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺(tái),請(qǐng)解答下列問(wèn)題:
(1)、兩種設(shè)備每臺(tái)的成本分別是多少萬(wàn)元?
(2)、兩種設(shè)備每臺(tái)的售價(jià)分別是6萬(wàn)元、10萬(wàn)元,且該公司生產(chǎn)兩種設(shè)備各30臺(tái),現(xiàn)公司決定對(duì)兩種設(shè)備優(yōu)惠出售,種設(shè)備按原來(lái)售價(jià)8折出售,B種設(shè)備在原來(lái)售價(jià)的基礎(chǔ)上優(yōu)惠10%,若設(shè)備全部售出,該公司一共獲利多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,則∠APB等于( )
A.150° B.105° C.120° D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為,另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q,當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo)(直接寫出答案);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將△AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.
(1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為 °.
(2)如圖2,若點(diǎn)F落在邊BC上,且AB=6,AD=10,求CE的長(zhǎng).
(3)如圖3,若點(diǎn)E是CD的中點(diǎn),AF的沿長(zhǎng)線交BC于點(diǎn)G,且AB=6,AD=10,求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).
(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是________;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)?/span>________,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,當(dāng)點(diǎn)E落在線段AD的延長(zhǎng)線上時(shí),探究DE,DF,AD之間的數(shù)量關(guān)系(直接寫出結(jié)論,不用加以證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com