【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由
(3)P為拋物線上一點,它關于直線BC的對稱點為Q,當四邊形PBQC為菱形時,求點P的坐標(直接寫出答案);
【答案】(1)
(2) 存在,
(3)點坐標為()或()
【解析】
將點坐標代入得到的值,再令得到點坐標;
點在直線上方的拋物線上,要使面積最大,則點的位置應在拋物線上且離直線的距離最遠處,把直線向上平移和拋物線只有一個公共點時,此時的交點即為點的位置,然后根據(jù)二次函數(shù)的性質,求出值和點坐標.
連接交于點,根據(jù)菱形的性質得到幾何關系,用中點坐標公式和系數(shù)與直線位置的特殊關系,確定點坐標并求出直線的解析式,聯(lián)立直線的解析式與拋物線解析式,即可求出點坐標.
解: 將點的坐標代入二次函數(shù),即,解得,故二次函數(shù)解析式為,令,解得,故點坐標為;
(2)存在,
理由:,
直線的解析式為,
當直線向上平移單位后和拋物線只有一個公共點時,面積最大,
整理得:
,
如圖2、圖3所示,連接交于點。
因為四邊形是菱形,所以為的中點,
因為點的坐標分別為、,所以由中點坐標公式得點坐標為,
由(2)可知直線的解析式為,
由于,所以設直線的解析式為,
將代入,求得直線的解析式為,
將直線的解析式與拋物線解析式聯(lián)立得:
,消去得:,
解得:,
將代入直線的解析式得,
將代入直線的解析式得,
故當四邊形為菱形時,點坐標為()或().
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一斜坡坡頂處的同一水平線上有一古塔,為測量塔高,數(shù)學老師帶領同學在坡腳處測得斜坡的坡角為,且,塔頂處的仰角為,他們沿著斜坡攀行了米,到達坡頂處,在處測得塔頂的仰角為.
(1)求斜坡的高度;
(2)求塔高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)是關于的二次函數(shù).
(1)求的值.
(2)當為何值時,該函數(shù)圖象的開口向下?
(3)當為何值時,該函數(shù)有最小值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AC=BC,∠ACB=90°,點D在AB上,點E在BC上,且AD=BE,BD=AC,連DE、CD.
(1)找出圖中全等圖形,并證明;
(2)求∠ACD的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩同心圓中,大圓的弦交小圓于、兩點,點到的距離等于的一半,且.則大小圓的半徑之比為( )
A. :1 B. 2: C. 10: D. 3:1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了方便孩子入學,小王家購買了一套學區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計劃每月還款y萬元,x個月還清貸款,若y是x的反比例函數(shù),其圖象如圖所示:
(1)求y與x的函數(shù)解析式;
(2)若小王家計劃180個月(15年)還清貸款,則每月應還款多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為12, D為AB邊上一動點,過點D作DE⊥BC于點E.過點E作EF⊥AC于點F.
(1)若AD=2,求AF的長;
(2)當AD取何值時,DE=EF?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com