【題目】如圖,在△ABC中,以點(diǎn)AB為直徑的⊙O分別與AC,BC交于點(diǎn)E,D,且BD=CD.
(1)求證:∠B=∠C .
(2)過(guò)點(diǎn)D作DF⊥OD,過(guò)點(diǎn)F作FH⊥AB.若AB=5,CD=,求AH的值.
【答案】(1)詳見解析;(2)
【解析】
(1)根據(jù)線段垂直平分線和等腰三角形的性質(zhì)可得結(jié)論;
(2)根據(jù)題意可知OD是△ABC的中位線,即OD∥AC,故DF⊥AC,根據(jù)圓周角定理AD⊥BC,可知△DCF∽△ACD,進(jìn)而可求得CF=1,DF=2,AF=4, 過(guò)點(diǎn)D作DM⊥AB,可知∠CFD=∠BMD=90°,可推出△CDF≌△BDM,即可得CF=BM=1,OM=,
又根據(jù)△AFH∽△ODM,可得,,
(1)證明:連結(jié)AD.
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵BD=CD
∴AC=AB
∴∠B=∠C.
(2)∵AO=BO,BD=CD
∴OD是△ABC的中位線
∴OD∥AC
∵DF⊥OD
∴DF⊥AC,
∵AD⊥BC
∴△DCF∽△ACD
∵AC=AB=5,CD=,
∴CF=1,DF=2
∴AF=4,
過(guò)點(diǎn)D作DM⊥AB
∴∠CFD=∠BMD=90°,
∴△CDF≌△BDM
∴CF=BM=1,OM=,
又∵△AFH∽△ODM,
∴,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課題學(xué)習(xí):矩形折紙中的數(shù)學(xué)實(shí)踐操作:折紙不僅是一項(xiàng)有趣的活動(dòng),也是一項(xiàng)益智的數(shù)學(xué)活動(dòng).?dāng)?shù)學(xué)課上,老師給出這樣一道題將矩形紙片ABCD沿對(duì)角線AC翻折,使點(diǎn)B落在矩形所在平面內(nèi),B'C和AD相交于點(diǎn)E,如圖1所示.
探素發(fā)現(xiàn):
(1)在圖1中,①請(qǐng)猜想并證明AE和EC的數(shù)量關(guān)系;②連接B'D,請(qǐng)猜想并證明B'D和AC的位置關(guān)系;
(2)第1小組的同學(xué)發(fā)現(xiàn),圖1中,將矩形ABCD沿對(duì)角線AC翻折所得到的圖形是軸對(duì)稱圖形.若沿對(duì)稱軸EF再次翻折所得到的圖形仍是軸對(duì)稱圖形,展開后如圖2所示,請(qǐng)你直接寫出該矩形紙片的長(zhǎng)、寬之比;
(3)若將圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(AB≠BC),如圖3所示,(1)中的結(jié)論①和結(jié)論②是否仍然成立,請(qǐng)直接寫出你的判斷.
拓展應(yīng)用:
(4)在圖3中,若∠B=30°,AB=2,請(qǐng)您直接寫出:當(dāng)BC的長(zhǎng)度為多少時(shí),△AB'D恰好為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機(jī)對(duì)部分游客進(jìn)行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表.
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | 10% |
滿意 | 54 | m |
比較滿意 | n | 40% |
不滿意 | 6 | 5% |
根據(jù)圖表信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)據(jù)統(tǒng)計(jì),該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對(duì)景區(qū)服務(wù)工作的肯定,請(qǐng)你估計(jì)該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(m,2),B(﹣3,n)兩點(diǎn)關(guān)于原點(diǎn)O對(duì)稱,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A.
(1)求反比例函數(shù)的解析式并判斷點(diǎn)B是否在這個(gè)反比例函數(shù)的圖象上;
(2)點(diǎn)P(x1,y1)也在這個(gè)反比例函數(shù)的圖象上,﹣3<x1<m且x1≠0,請(qǐng)直接寫出y1的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為3的扇形AOB,∠AOB=120°,以AB為邊作矩形ABCD交弧AB于點(diǎn)E,F,且點(diǎn)E,F為弧AB的四等分點(diǎn),矩形ABCD與弧AB形成如圖所示的三個(gè)陰影區(qū)域,其面積分別為,,,則為( )(取)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科研所計(jì)劃建一幢宿舍樓,因?yàn)榭蒲兴鶎?shí)驗(yàn)中會(huì)產(chǎn)生輻射,所以需要有兩項(xiàng)配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對(duì)宿含樓進(jìn)行防輻射處理;已知防輻射費(fèi)y萬(wàn)元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時(shí),防輻射費(fèi)用為720萬(wàn)元;當(dāng)科研所到宿含樓的距離為3km或大于3km時(shí),輻射影響忽略不計(jì),不進(jìn)行防輻射處理,設(shè)修路的費(fèi)用與x2成正比,且比例系數(shù)為m萬(wàn)元,配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi).
(1)當(dāng)科研所到宿舍樓的距離x=3km時(shí),防輻射費(fèi)y=____萬(wàn)元,a=____,b=____;
(2)若m=90時(shí),求當(dāng)科研所到宿舍樓的距離為多少km時(shí),配套工程費(fèi)最少?
(3)如果最低配套工程費(fèi)不超過(guò)675萬(wàn)元,且科研所到宿含樓的距離小于等于3km,求m的范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末沿同一條路線登山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題
(1)甲登山的速度是每分鐘 米;乙在A地提速時(shí),甲距地面的高度為 米;
(2)若乙提速后,乙的速度是甲登山速度的3倍;
①求乙登山全過(guò)程中,登山時(shí)距地面的高度y(米)與登山時(shí)間x(分鐘)之間的函數(shù)解析式;
②乙計(jì)劃在他提速后5分鐘內(nèi)追上甲,請(qǐng)判斷乙的計(jì)劃能實(shí)現(xiàn)嗎?并說(shuō)明理由;
(3)當(dāng)x為多少時(shí),甲、乙兩人距地面的高度差為80米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線(k<0)經(jīng)過(guò)直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com