【題目】如圖,BD是△ABC的角平分線,點(diǎn)E位于邊BC上,已知BD是BA與BE的比例中項(xiàng).
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
【答案】證明見(jiàn)解析
【解析】試題分析:(1)根據(jù)BD是AB與BE的比例中項(xiàng)可得, BD是∠ABC的平分線,則∠ABD=∠DBE,可證△ABD∽△DBE, ∠A=∠BDE. 又因?yàn)椤?/span>BDC=∠A+∠ABD,
即可證明∠CDE=∠ABD=∠ABC,(2) 先根據(jù)∠CDE=∠CBD,∠C=∠C,可判定
△CDE∽△CBD,可得.又△ABD∽△DBE,所以,,所以
.
試題解析:(1)∵BD是AB與BE的比例中項(xiàng),
∴,
又BD是∠ABC的平分線,則∠ABD=∠DBE,
∴△ABD∽△DBE,
∴∠A=∠BDE.
又∠BDC=∠A+∠ABD,
∴∠CDE=∠ABD=∠ABC,即證.
(2)∵∠CDE=∠CBD,∠C=∠C,
∴△CDE∽△CBD,
∴.
又△ABD∽△DBE,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
【答案】(1)b=﹣2a,頂點(diǎn)D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點(diǎn)坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點(diǎn)式可求得其頂點(diǎn)D的坐標(biāo);
(2)把點(diǎn)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點(diǎn)N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫(huà)圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫(huà)出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個(gè)公共點(diǎn)時(shí),t的值,再確定當(dāng)線段一個(gè)端點(diǎn)在拋物線上時(shí),t的值,可得:線段GH與拋物線有兩個(gè)不同的公共點(diǎn)時(shí)t的取值范圍.
試題解析:(1)∵拋物線有一個(gè)公共點(diǎn)M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點(diǎn)D的坐標(biāo)為
(2)∵直線y=2x+m經(jīng)過(guò)點(diǎn)M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點(diǎn)坐標(biāo)為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對(duì)稱(chēng)軸交直線于點(diǎn)E,
∵拋物線對(duì)稱(chēng)軸為
設(shè)△DMN的面積為S,
(3)當(dāng)a=1時(shí),
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當(dāng)點(diǎn)H平移后落在拋物線上時(shí),坐標(biāo)為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當(dāng)線段GH與拋物線有兩個(gè)不同的公共點(diǎn),t的取值范圍是
【題型】解答題
【結(jié)束】
26
【題目】搖椅是老年人很好的休閑工具,右圖是一張搖椅放在客廳的側(cè)面示意圖,搖椅靜止時(shí),以O(shè)為圓心OA為半徑的的中點(diǎn)P著地,地面NP與相切,已知∠AOB=60°,半徑OA=60cm,靠背CD與OA的夾角∠ACD=127°,C為OA的中點(diǎn),CD=80cm,當(dāng)搖椅沿滾動(dòng)至點(diǎn)A著地時(shí)是搖椅向后的最大安全角度.
(1)靜止時(shí)靠背CD的最高點(diǎn)D離地面多高?
(2)靜止時(shí)著地點(diǎn)P至少離墻壁MN的水平距離是多少時(shí)?才能使搖椅向后至最大安全角度時(shí)點(diǎn)D不與墻壁MN相碰.
(精確到1cm,參考數(shù)據(jù)π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)D為AB的中點(diǎn),過(guò)點(diǎn)D作DE∥BC交AC于E.
(1)求證:E為AC的中點(diǎn);
(2)如圖2,過(guò)點(diǎn)D作QD⊥AB交BC的延長(zhǎng)線于Q,過(guò)點(diǎn)E作EP⊥AC交CB的延長(zhǎng)線于P,連AP、AQ.若PQ=12,AP+AQ=20,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列分式方程解應(yīng)用題:
某學(xué)校準(zhǔn)備組織部分學(xué)生到少年宮參加活動(dòng),陳老師從少年宮帶回來(lái)兩條信息:
信息一:按原來(lái)報(bào)名參加的人數(shù),共需要交費(fèi)用320元,如果參加的人數(shù)能夠增加到原來(lái)人數(shù)的2倍,就可以享受優(yōu)惠,此時(shí)只需交費(fèi)用480元;
信息二:如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來(lái)少4元.
根據(jù)以上信息,原來(lái)報(bào)名參加的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,E是△ABD內(nèi)的點(diǎn),EB=EC.
(1)如圖1,若EB=BC,求∠EBD的度數(shù);
(2)如圖2,EC與BD交于點(diǎn)F,連接AE,若,試探究線段FC與BE之間的等量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-C-D…的規(guī)律繞在ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )
A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,坡AB的坡比為1:2.4,坡長(zhǎng)AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點(diǎn)H、A、T在同一條地平線MN上.
(1)試問(wèn)坡AB的高BT為多少米?
(2)若某人在坡AB的坡腳A處和中點(diǎn)D處,觀測(cè)到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個(gè)頂點(diǎn)E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.
(1)如圖①,當(dāng)四邊形EFGH為正方形時(shí),求△GFC的面積;
(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時(shí),求△GFC的面積(用a表示);
(3)在(2)的條件下,△GFC的面積能否等于2?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com