【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱“馬踏飛燕”,于1969年10月出土于武威市的雷臺漢墓,1983年10月被國家旅游局確定為中國旅游標志,在很多旅游城市的廣場上都有“馬踏飛燕”雕塑,某學(xué)習(xí)小組把測量本城市廣場的“馬踏飛燕”雕塑(圖②)最高點離地面的高度作為一次課題活動,同學(xué)們制定了測量方案,并完成了實地測量,測得結(jié)果如下表:
課題 | 測量“馬踏飛燕”雕塑最高點離地面的高度 | |||
測量示意圖 | 如圖,雕塑的最高點到地面的高度為,在測點用儀器測得點的仰角為,前進一段距離到達測點,再用該儀器測得點的仰角為,且點,,,,,均在同一豎直平面內(nèi),點,,在同一條直線上. | |||
測量數(shù)據(jù) | 的度數(shù) | 的度數(shù) | 的長度 | 儀器()的高度 |
5米 | 米 |
請你根據(jù)上表中的測量數(shù)據(jù),幫助該小組求出“馬踏飛燕”雕塑最高點離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,,,,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個邊長都為的小正方形組成的網(wǎng)格中,小正方形的頂點叫做格點.線段的端點均在格點上.
(1)線段的長度等于 ;
(2)將線段繞點逆時針旋轉(zhuǎn)得到,在圖中畫出,并連結(jié).
(3)在線段上確定一點連結(jié),使得與的面積比為.
說明:以上作圖只用無刻度的直尺畫圖,保留畫圖痕跡,不寫畫法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個交點的橫坐標是2.
(1)求反比例函數(shù)的表達式;
(2)將一次函數(shù)的圖象向下平移2個單位,求平移后的圖象與反比例函數(shù)圖象的交點坐標;
(3)直接寫出一個一次函數(shù),使其過點,且與反比例函數(shù)的圖象沒有公共點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,,…,,都是一邊在軸上的等邊三角形,點,,,…,都在反比例函數(shù)的圖象上,點,,,…,,都在軸上,則的坐標為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為半⊙O的直徑,,是半圓上的三等分點,,與半⊙O相切于點,點為上一動點(不與點,重合),直線交于點,于點,延長交于點,則下列結(jié)論正確的是______________.(寫出所有正確結(jié)論的序號)
①;②的長為;③;④;⑤為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于,兩點,交軸于點,且,點是第三象限內(nèi)拋物線上的一動點.
(1)求此拋物線的表達式;
(2)若,求點的坐標;
(3)連接,求面積的最大值及此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如表是一個4×4(4行4列共16個“數(shù)”組成)的奇妙方陣,從這個方陣中選四個“數(shù)”,而且這四個“數(shù)”中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是( 。
30 |
| 2sin60° | 22 |
﹣3 | ﹣2 | ﹣sin45° | 0 |
|﹣5| | 6 | 23 | |
()﹣1 | 4 |
| ()﹣1 |
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象交于點,點在軸的正半軸上,且點的橫坐標為,過點作軸的垂線,分別交一次函數(shù)的圖象于點,交正比例函數(shù)的圖象于點.
(1)求點的坐標;
(2)當為何值時,;
(3)連接、,交于點,已知,在討論的面積與面積的大小問題時,嘉嘉認為,淇淇認為,請你作為小法官,幫助他們兩人評判,誰的說法正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑期將至,某健身俱樂部面向?qū)W生推出暑期優(yōu)惠活動,活動方案如下.
方案一:購買一張學(xué)生暑期專享卡,每次健身費用按六折優(yōu)惠;
方案二:不購買學(xué)生暑期專享卡,每次健身費用按八折優(yōu)惠;
設(shè)某學(xué)生暑期健身(次),按照方案一所需費用為,(元),且;按照方案二所需費用為(元) ,且其函數(shù)圖象如圖所示.
求和的值,并說明它們的實際意義;
求打折前的每次健身費用和的值;
八年級學(xué)生小華計劃暑期前往該俱樂部健身次,應(yīng)選擇哪種方案所需費用更少?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com