【題目】如圖所示,正三角形ABC的邊長為3+.

(1)如圖,正方形EFPN的頂點E,F(xiàn)在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);

(2)求(1)中作出的正方形E′F′P′N′的面積.

【答案】(1)見解析;(2) 36-18.

【解析】

(1)利用位似圖形的性質,作出正方形EFPN的位似正方形E′F′P′N′,如圖所示;

(2)根據正三角形、正方形、直角三角形相關線段之間的關系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的邊長,即可求解.

1)如圖,正方形E′F′P′N′即為所求.

(2)設正方形E′F′P′N′的邊長為x,

∵△ABC為正三角形,

AE′=BF′=x.

E′F′+AE′+BF′=AB,

x+x+x=3+,

x=,即x=3-3.

故(1)中作出的正方形E′F′P′N′的邊長3-3,

E′F′P′N′的面積為:(3-3)= 36-18.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記ABM和CDN的面積和為S,則四邊形MQNP的面積為( 。

A. S B. S C. S D. S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列解題過程:

===-2;

==

請回答下列問題:

1)觀察上面的解題過程,請直接寫出式子=   ;

2)觀察上面的解題過程,請直接寫出式子=   ;

3)利用上面所提供的解法,請求+···+的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.

(1)求證:EG=CG且EG⊥CG;

(2)將圖①中△BEF繞B點逆時針旋轉45,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

(3)將圖①中△BEF繞B點旋轉任意角度,如圖③所示,再連接相應的線段,問(1)中的結論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=1,CD=,則△ABC的邊長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結論:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標軸上,∠ACB=900,且A04),點C2,0),BE⊥x軸于點E,一次函數(shù)y=x+b經過點B,交y軸于點D

1求證;△AOC≌△CEB

2△ABD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,且AB=BC.AD是⊙O的直徑,AC、BD交于點E,PDB延長線上一點,且PB=BE.

(1)求證:ABE∽△DBA;

(2)試判斷PA與⊙O的位置關系,并說明理由;

(3)若EBD的中點,求tanADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)圖象經過點M(2,6)

(1)求這個函數(shù)的解析式,并指出它的圖象位于哪些象限?

(2)在這個圖象上任取兩個點A(a,b)和B(a′,b′),如果a>a′,那么bb′怎樣的大小關系?

查看答案和解析>>

同步練習冊答案