【題目】已知點(diǎn)A、B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A.B.C.D各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的“和諧正方形”.例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)“和諧正方形”.
(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“和諧正方形”的邊長(zhǎng);
(2)如圖2,若某函數(shù)是反比例函數(shù)y=(k>0),它的圖象的“和諧正方形”為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“和諧正方形”為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)求出該二次函數(shù)的解析式.
【答案】(1)或;(2)1,y=;(3)或或或
【解析】
(1)利用正方形的性質(zhì)確定相關(guān)點(diǎn)的坐標(biāo)從而計(jì)算正方形的邊長(zhǎng),注意有兩種情況.
(2)因?yàn)?/span>ABCD為正方形,所以可作垂線得到等腰直角三角形,利用點(diǎn)D(2,m)的坐標(biāo)表示出點(diǎn)C的坐標(biāo)從而求解.
(3)由題意得拋物線開(kāi)口既可能向上,也可能向下.當(dāng)拋物線開(kāi)口向上時(shí),正方形的另一個(gè)頂點(diǎn)也是在拋物線上,這個(gè)點(diǎn)既可能在點(diǎn)(3,4)的左邊,也可能在點(diǎn)(3,4)的右邊,過(guò)點(diǎn)(3,4)向x軸作垂線,利用全等三角形確定線段的長(zhǎng)即可確定拋物線上另一個(gè)點(diǎn)的坐標(biāo);當(dāng)拋物線開(kāi)口向下時(shí)也是一樣地分為兩種情況來(lái)討論.
解:(1)(I)當(dāng)點(diǎn)A在x軸正半軸、點(diǎn)B在y軸負(fù)半軸上時(shí):
∵四邊形ABCD是正方形,一次函數(shù)y=x+1的圖象與坐標(biāo)軸的交點(diǎn)為C,D,
∴D(0,.1),C(﹣1,0),
∴OD=OD=1,
∴= = ,
∴正方形ABCD的邊長(zhǎng)為.
(II)當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí):
設(shè)正方形邊長(zhǎng)為a,易得3a=,
解得a= ,此時(shí)正方形的邊長(zhǎng)為 .
∴所求“和諧正方形”的邊長(zhǎng)為或;
(2)如圖,作DE⊥x軸,CF⊥y軸,垂足分別為點(diǎn)E、F,
∵四邊形ABCD是正方形,
∴∠CBA=∠DAB=90°,BC=BA=AD,
∵∠CFB=∠BOA=∠DEA=90°
∴∠FBC=∠BAO=∠ADE,
∴△ADE≌△BAO≌△CBF(AAS).
∵點(diǎn)D的坐標(biāo)為(2,m),m<2,
∴DE=OA=BF=m,
∴OB=AE=CF=2﹣m.
∴OF=BF+OB=2,
∴點(diǎn)C的坐標(biāo)為(2﹣m,2).
∴2m=2(2﹣m),解得m=1.
∴反比例函數(shù)的解析式為y=;
(3)實(shí)際情況是拋物線開(kāi)口向上的兩種情況中,另一個(gè)點(diǎn)都在(3,4)的左側(cè),而開(kāi)口向下時(shí),另一點(diǎn)都在(3,4)的右側(cè),與上述解析明顯不符合,
①當(dāng)點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)為(4,1),對(duì)應(yīng)的函數(shù)解析式是y=;
②當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn) B在 y軸正半軸上,點(diǎn)D 坐標(biāo)為(3,4)時(shí):不存在,
③當(dāng)點(diǎn)A 在 x 軸正半軸上,點(diǎn) B在 y軸負(fù)半軸上,點(diǎn)C 坐標(biāo)為(3,4)時(shí):不存在;
④當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)D坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)C為(﹣1,3),對(duì)應(yīng)的函數(shù)的解析式是y=;
⑤當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(7,﹣3)時(shí),對(duì)應(yīng)的函數(shù)解析式是y=;
⑥當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(﹣4,7)時(shí),對(duì)應(yīng)的拋物線為y=;
綜合以上可得二次函數(shù)的解析式分別為:或或或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OP1A1B1,A1P2A2B2,A2P3A3B3,An﹣1PnAnBn都是正方形,其中點(diǎn)A1、A2、A3…An在y軸上,點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)在反比例函數(shù)y=(x>0)的圖象上,已知B1(﹣1,1),則點(diǎn)Pn的坐標(biāo)為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種雙肩包,已知這種雙肩包的成本價(jià)每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷(xiāo)售量(單位:個(gè))與銷(xiāo)售單價(jià)(單位:元)有如下關(guān)系:()設(shè)這種雙肩包每天的銷(xiāo)售利潤(rùn)為元.
(1)這種雙肩包銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(2)如果物價(jià)部門(mén)規(guī)定這種雙肩包的銷(xiāo)售單價(jià)不高于48元,該商店銷(xiāo)售這種雙肩包每天要獲得300元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校一課外活動(dòng)小組為了解學(xué)生最喜歡的球類(lèi)運(yùn)動(dòng)情況,隨機(jī)抽查本校九年級(jí)的200名學(xué)生,調(diào)查的結(jié)果如圖所示.請(qǐng)根據(jù)該扇形統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運(yùn)動(dòng)的學(xué)生人數(shù);
(3)若由3名最喜歡籃球運(yùn)動(dòng)的學(xué)生,1名最喜歡乒乓球運(yùn)動(dòng)的學(xué)生,1名最喜歡足球運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng).欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運(yùn)動(dòng)的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點(diǎn),B是頂點(diǎn)),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點(diǎn)C開(kāi)始不斷重復(fù)圖形W形成一組“波浪線”.若點(diǎn),在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地質(zhì)量監(jiān)管部門(mén)對(duì)轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類(lèi)產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對(duì)某一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)做檢測(cè),獲得了它們的質(zhì)量指標(biāo)值s,并對(duì)樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:
質(zhì)量指標(biāo)值 | |||||
等級(jí) | 次品 | 二等品 | 一等品 | 二等品 | 次品 |
說(shuō)明:等級(jí)是一等品,二等品為質(zhì)量合格(其中等級(jí)是一等品為質(zhì)量?jī)?yōu)秀).
等級(jí)是次品為質(zhì)量不合格.
b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如下(不完整).
c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.
甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
m | ||
32 | n | |
0.12 | ||
0 | 0.00 | |
合計(jì) | 50 | 1.00 |
乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖
d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 | 方差 | |
甲企業(yè) | 31.92 | 32.5 | 34 | 15 | 11.87 |
乙企業(yè) | 31.92 | 31.5 | 31 | 20 | 15.34 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)m的值為_(kāi)_______,n的值為_(kāi)_______.
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為_(kāi)_______;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有________萬(wàn)件;
(3)根據(jù)圖表數(shù)據(jù),你認(rèn)為_(kāi)_______企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個(gè)角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是的一定點(diǎn),D是弦AB上的一定點(diǎn),P是弦CB上的一動(dòng)點(diǎn).連接DP,將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線段.射線與交于點(diǎn)Q.已知,設(shè)P,C兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離,P,Q兩點(diǎn)的距離為.
小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),,隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,,與x的幾組對(duì)應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.50 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)據(jù)所對(duì)應(yīng)的點(diǎn),,并畫(huà)出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:連接DQ,當(dāng)△DPQ為等腰三角形時(shí),PC的長(zhǎng)度約為_____cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D是半徑OC上一點(diǎn),且 OD=4.A,B是⊙O上的兩個(gè)動(dòng)點(diǎn),∠ADB=90°,F是AB的中點(diǎn),則OF的長(zhǎng)的最大值等于______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com