【題目】如圖,五邊形ABCDE的各內(nèi)角相等.
(1)求每個內(nèi)角的度數(shù);
(2)連接AC,AD,∠1=∠2,∠3=∠4,求∠CAD的度數(shù).
【答案】(1)每個內(nèi)角為108°;(2)36°.
【解析】
(1)由五邊形ABCDE的內(nèi)角都相等,即可求出五邊形的每個內(nèi)角度數(shù);
(2)依據(jù)三角形內(nèi)角和定理,求出∠1=∠2=∠3=∠4=36°,從而求出∠CAD=108°﹣72°=36°.
解:(1)∵五邊形的內(nèi)角和是(5﹣2)×180°=540°,
∴每個內(nèi)角為540°÷5=108°,
(2)∵∠E=∠B=∠BAE=108°,
又∵∠1=∠2,∠3=∠4,
∴∠1=∠2=∠3=∠4=(180°﹣108°)÷2=36°,
∴∠CAD=∠BAE﹣∠1﹣∠3=108°﹣36°﹣36°=36°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,,,點在上,,過點作,交于,點從點出發(fā)以個單位的速度沿著線段向終點運動,同時點從點出發(fā)也以個單位的速度沿著線段向終點運動,設(shè)運動時間為.
填空:當(dāng)時,________;
當(dāng)平分時,直線將菱形的周長分成兩部分,求這兩部分的比;
以為圓心,長為半徑的是否能與直線相切?如果能,求此時的值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
如圖,垂直于地面放置的正方形框架,邊長為,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子,的長度和為.那么燈泡離地面的高度為________.
不改變圖中燈泡的高度,將兩個邊長為的正方形框架按圖擺放,請計算此時橫向影子,的長度和為多少?
有個邊長為的正方形按圖擺放,測得橫向影子,的長度和為,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含,,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖形的變換趣味無窮,如圖①,在平面直角坐標(biāo)系中,線段l位于第二象限,A(a,b)是線段l上一點,對于線段我們也可以做一些變換:
(1)如圖②,將線段l以y軸為對稱軸作軸對稱變換得到線段l1,若點A(,3),則點A(,3)關(guān)于y軸為對稱軸的點A1的坐標(biāo)是______.
(2)如圖④,將線段l繞坐標(biāo)原點O順時針方向旋轉(zhuǎn)90°得到線段l2,則點A(a,b)對應(yīng)的點A3的坐標(biāo)是什么?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=nx2﹣3nx﹣4n(n<0)與x軸交于B、C兩點(點B在點C的左側(cè)),且拋物線與y軸交于點A.
(1)點B的坐標(biāo)為 ,點C的坐標(biāo)為 ;
(2)若∠BAC=90°,求拋物線的解析式.
(3)點M是(2)中拋物線上的動點,點N是其對稱軸上的動點,是否存在這樣的點M、N,使得以A、C、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)感知:如圖1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知DB,DC數(shù)量關(guān)系為: .
(2)探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,(1)中的結(jié)論是否成立?請作出判斷并給予證明.
(3)應(yīng)用:如圖3,在四邊形ABCD中,DB=DC,∠ABD+∠ACD=180°,∠ABD<90°,DE⊥AB于點E,試判斷AB,AC,BE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,直角的頂點在上,、分別交、于點、,繞點任意旋轉(zhuǎn).當(dāng)時,的值為________;當(dāng)時,為________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEF是兩塊可完全重合的三角板,,.在如圖1所示的狀態(tài)下,△DEF固定不動,將△ABC沿直線a向左平移.
(1)當(dāng)△ABC移到圖2位置時,連解AF、DC,求證:AF=DC;
(2)若EF=8,在上述平移過程中,試猜想點C距點E多遠(yuǎn)時,線段AD被直線a垂直平分。并證明你的猜想是正確的。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(3)△ABC 直角三角形(填“是”或“不是”);
(4)請在y軸上畫一點P,使△PB1C的周長最小,并寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com