【題目】某車間有120名工人,為了了解這些工人日加工零件數(shù)的情況,隨機抽出其中的30名工人進行調(diào)查.整理調(diào)查結(jié)果,繪制出不完整的條形統(tǒng)計圖(如圖).根據(jù)圖中的信息,解答下列問題:
(1)在被調(diào)查的工人中,日加工9個零件的人數(shù)為名;
(2)在被調(diào)查的工人中,日加工12個零件的人數(shù)為名,日加工個零件的人數(shù)最多,日加工15個零件的人數(shù)占被調(diào)查人數(shù)的%;
(3)依據(jù)本次調(diào)查結(jié)果,估計該車間日人均加工零件數(shù)和日加工零件的總數(shù).

【答案】
(1)4
(2)8;14;20
(3)

解:日加工零件的平均數(shù)為:(9×4+12×8+14×12+15×6)÷30=13個,

加工零件總個數(shù)為120×13=1560個


【解析】解:(1)觀察條形統(tǒng)計圖即可求得日加工9個零件的工人有4人;(2)日加工零件12個的有:30﹣4﹣12﹣6=8人;日加工零件14個的有12人,最多,日加工15個零件的人數(shù)占被調(diào)查人數(shù)的百分比為:6÷30×100%=20%;
(1)直接觀察條形統(tǒng)計圖即可求得日加工9個零件的人數(shù);(2)用總?cè)藬?shù)減去其他小組的人數(shù)即可求得日加工零件12個的人數(shù);觀察發(fā)現(xiàn)日加工零件最多的是加工14個零件的人數(shù);(3)用加權(quán)平均數(shù)計算加工零件的平均數(shù)即可;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包果樹若干畝,今年投資元,收獲水果總產(chǎn)量為千克.此水果在市場上每千克售元,在果園直接銷售每千克售.該農(nóng)戶將水果拉到市場出售平均每天出售千克,需人幫忙,每人每天付工資元,農(nóng)用車運費及其他各項稅費平均每天元.

分別用含的代數(shù)式表示兩種方式出售水果的收入.

元,元,且兩種出售水果方式都在相同的時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好.

該農(nóng)戶加強果園管理,力爭到明年純收入達到元,而且該農(nóng)戶采用了中較好的出售方式出售,那么純收入增長率是多少(純收入總收入-總支出)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示. 設(shè)點A,B,C所對應(yīng)數(shù)的和是p.

(1)若以B為原點,則點A,C所對應(yīng)的數(shù)為 ,p的值為 若以C為原點,p 的值為 ;

(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點NNP⊥AD于點P,連接ACNP于點Q,連接MQ.設(shè)運動時間為t秒.

1AM= ,AP= .(用含t的代數(shù)式表示)

2)當(dāng)四邊形ANCP為平行四邊形時,求t的值

3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,

使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由

使四邊形AQMK為正方形,則AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:m=n=0時,我們稱使得成立的一對數(shù)m,n相伴數(shù)對,記為(m,n).

(1)若(m,1)是相伴數(shù)對,則m=_____;

(2)(m,n)是相伴數(shù)對,則代數(shù)式m﹣[n+(6﹣12n﹣15m)]的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.

(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為( )

A. 10 B. 8 C. 14 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBC,DF、BE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DFBE分別平分∠ADE、ABC,

∴∠ADF=      

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個月的試銷時間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價x(元/kg)的變化而變化,具體變化規(guī)律如下表所示

銷售單價x(元/kg)

70

75

80

85

90

銷售量w(kg)

100

90

80

70

60

設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時,y的值最大?
(3)若在第一個月里,按使y獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個月的利潤達到1700元,那么第二個月里應(yīng)該確定銷售單價為多少元?

查看答案和解析>>

同步練習(xí)冊答案