【題目】如圖,在平四邊形ABCD中,對角線AC、BD交于點(diǎn)O,M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)在直線AC的同側(cè),以點(diǎn)O為位似中心,作出△CON的位似三角形,并使△CON與和它位似的三角形的位似比是1:2.(寫出結(jié)果,不寫作法,保留作圖痕跡).
【答案】(1)6;(2)見解析
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)得AD∥BC,AD=BC,OB=OD,則利用DM∥BC可判斷△MND∽△CNB,所以MD:BC=DN:BN=1:2,設(shè)OB=OD=x,則BD=2x,BN=OB+ON=x+1,DN=x﹣1,于是得到x+1=2(x﹣1),解得x=3,所以BD=2x=6;
(2)如圖,在OD上截取NG=ON,延長OC到H,使HC=OC,則△HOG滿足條件.
解:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,OB=OD,
∴DM∥BC,
∴△MND∽△CNB,
∴MD:BC=DN:BN,
∵M為AD中點(diǎn),
∴MD:BC=1:2,
∴DN:BN=1:2,即BN=2DN,
設(shè)OB=OD=x,則BD=2x,BN=OB+ON=x+1,DN=x﹣1,
∴x+1=2(x﹣1),解得x=3,
∴BD=2x=6;
(2)如圖,△HOG為所作.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,在∠AOB的內(nèi)部有一條射線OC.
(1)畫射線OD⊥OC.
(2)寫出此時∠AOD與∠BOC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個布袋中裝有2個紅球和2個籃球,它們除顏色外其他都相同.
(1)攪勻后從中摸出一個球記下顏色,不放回繼續(xù)再摸第二個球,求兩次都摸到紅球的概率;
(2)在這4個球中加入x個用一顏色的紅球或籃球后,進(jìn)行如下試驗(yàn),攪勻后隨機(jī)摸出1個球記下顏色,然后放回,多次重復(fù)這個試驗(yàn),通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到紅球的概率穩(wěn)定在0.80,請推算加入的是哪種顏色的球以及x的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)(m,﹣2),則滿足y1>y2的自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,求∠AOM﹣∠NOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
(1)兩條直線不相交就平行
(2)在同一平面內(nèi),兩條平行的直線有且只有一個交點(diǎn)
(3)過一點(diǎn)有且只有一條直線與已知直線平行
(4)平行于同一直線的兩條直線互相平行
(5)兩直線的位置關(guān)系只有相交與平行
A. 0 B. 1 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校李老師布置了兩道解方程的作業(yè)題:
選用合適的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同學(xué)的作業(yè):
解:(1)移項(xiàng),得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)變形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
請你幫王萌檢查他的作業(yè)是否正確,把不正確的改正過來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)M(﹣2,1)關(guān)于x軸對稱的點(diǎn)N的坐標(biāo)是__,直線MN與x軸的位置關(guān)系是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com