【題目】如圖,∠ACB90,ACBC,ADCE,BECE,垂足分別為D、E

1)求證:△ACD≌△CBE

2)已知AD5,DE3,求BE的長(zhǎng).

【答案】1)詳見(jiàn)解析;(22

【解析】

1)根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質(zhì)求出∠ACD=∠CBE,根據(jù)AAS證明△BCE≌△CAD

2)根據(jù)全等三角形的對(duì)應(yīng)邊相等得到ADCE,CDBE,再根據(jù)AD5,DE3,即可解答.

1)證明:∵∠ACB90°,BECE

∴∠ECB+ACD90°∠ECB+CBE90°,

∴∠ACD=∠CBE,

ADCE,BECE,

∴∠ADC=∠CEB90°,

在△ACD和△CBE中,

∴△ACD≌△CBEAAS);

2)解:∵△ACD≌△CBE

ADCE5,CDBE

BECDCEDE5-32

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在世界經(jīng)濟(jì)的影響下,國(guó)家采取擴(kuò)大內(nèi)需的政策,基建投資成為拉動(dòng)內(nèi)需最強(qiáng)有力的引擎,金強(qiáng)公司中標(biāo)一項(xiàng)工程,在甲、乙兩地施工,其中甲地需推土機(jī)30臺(tái),乙地需推土機(jī)26臺(tái),公司在AB兩地分別庫(kù)存推土機(jī)32臺(tái)和24臺(tái),現(xiàn)從A地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別是400元和300元.從B地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別為200元和500元,設(shè)從A地運(yùn)往甲地x臺(tái)推土機(jī),運(yùn)這批推土機(jī)的總費(fèi)用為y元.

1)根據(jù)題意,可將庫(kù)存地和施工地之間推土機(jī)的運(yùn)輸數(shù)量列表如下:

甲地(臺(tái))

乙地(臺(tái))

合計(jì)

A

x

A地庫(kù)存:32 (臺(tái))

B

B地庫(kù)存:24 (臺(tái))

合計(jì)

甲地需求:30 (臺(tái))

乙地需求:26 (臺(tái))

總計(jì):56 (臺(tái))

2)求yx的函數(shù)關(guān)系式;

3)當(dāng)x取何值時(shí),能使運(yùn)送這批推土機(jī)的總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).ABC的邊BCx軸上,A、C兩點(diǎn)的坐標(biāo)分別為A0m)、Cn,0),B(﹣5,0),且,點(diǎn)PB出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

1)求A、C兩點(diǎn)的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),是否存在一點(diǎn)P,使PAC是等腰三角形?若存在,請(qǐng)寫出滿足條件的所有P點(diǎn)的坐標(biāo)并求t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△A'B'C'關(guān)于直線l對(duì)稱,下列結(jié)論:①△ABC≌△A'B'C' ;②∠BAC=B'A'C';③直線l不一定垂直平分線段CC';④直線BCB'C'的交點(diǎn)一定在直線l.其中正確的是________ (填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,OBOC分別平分∠ABC和∠ACB,過(guò)ODEBC,分別交AB、AC于點(diǎn)D、E,若DE=5,BD=3,則線段CE的長(zhǎng)為( 。

A. 3 B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD中,AB10,AD8,將紙片折疊,使點(diǎn)B落在CD上的B處,折痕為AE,在折痕AE上存在一點(diǎn)P到邊CD的距離與到點(diǎn)B的距離相等,則此相等的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),與軸交于點(diǎn),直線經(jīng)過(guò),兩點(diǎn).

求拋物線的解析式;

上方的拋物線上有一動(dòng)點(diǎn)

如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);

如圖,過(guò)點(diǎn),的直線于點(diǎn),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與雙曲線(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6.

(1)求雙曲線的解析式;

(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),

C(3,4)

⑴ 作出與△ABC關(guān)于y軸對(duì)稱△A1B1C1,并寫出 三個(gè)頂點(diǎn)的坐標(biāo)為:A1 ),B1 ),C1 );

⑵ 在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);

⑶ 在 y 軸上是否存在點(diǎn) Q,使得SAOQ=SABC,如果存在,求出點(diǎn) Q 的坐標(biāo),如果不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案