【題目】如圖,矩形ABCD中,BC7cm,CD5cmP、Q兩點分別從BC兩點同時出發(fā),沿矩形ABCD的邊以1cm/s的速度逆時針運動,點P到達點C時兩點同時停止運動.當點P的運動時間為_s時,PQC為等腰三角形.

【答案】

【解析】

根據(jù)題意,可以分兩種情況討論,分別求出相應(yīng)的時間,即可解答.

即點QCD段時,設(shè)運動時間為s,則PC=,CQ=,

根據(jù)題意:PC= CQ,即,

解得:

QAD段時,設(shè)運動時間為s,則PC=CQ=,

如圖,作QEBCE,

∵四邊形ABCD為矩形,

∴四邊形QECD也為矩形,

設(shè)運動時間為s

QP=QC,

PE=EC=QD=BP=,

BP+ PE+EC=2()=7,

解得:;

綜上,點P的運動時間為s時,PQC為等腰三角形.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒的速度旋轉(zhuǎn),直線MN保持不動,如圖2,設(shè)旋轉(zhuǎn)時間為t0≤t≤60,單位秒)

1)當t2時,求∠AOB的度數(shù);

2)在運動過程中,當∠AOB第二次達到63°時,求t的值;

3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于而小于180°的角)的平分線?如果存在,請求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線為任意實數(shù)經(jīng)過下圖中兩點M1,-2)、N0),其中M為拋物線的頂點,N為定點.下列結(jié)論

若方程的兩根為 ), ;

函數(shù)值隨自變量的減小而減。

, .

垂直于軸的直線與拋物線交于C、D兩點C、D兩點的橫坐標分別為,=2

其中正確的是( )

A. ①② B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)

關(guān)系:①ADBC,AB=CD,③∠A=C,④∠B+C=180°.

已知:在四邊形ABCD中,      ,      ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為箏形.

(1)寫出箏形的兩個性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點E、F分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25,AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為等邊三角形,邊上一點,在上取一點,使,在邊上取一點,使,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形ABC中,D、E分別是AB、BC上的點,且ADBE,AE、CD相交于點PCFAE

1)求∠CPE的度數(shù);

2)求證:PFPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結(jié)CD,EA,延長EACD于點G

1)求證:ACE≌△CBD;

2)求∠CGE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案