【題目】如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?/span>3°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?/span>6°的速度旋轉(zhuǎn),直線MN保持不動(dòng),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0≤t≤60,單位秒)
(1)當(dāng)t=2時(shí),求∠AOB的度數(shù);
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到63°時(shí),求t的值;
(3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而小于180°的角)的平分線?如果存在,請(qǐng)求出t的值;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)162°;(2)27;(3)存在,當(dāng)t的值分別為12、24秒時(shí),射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線
【解析】
(1)先由題意計(jì)算出∠AOM和∠BON的度數(shù),再由∠AOB=180°﹣∠AOM﹣∠BON計(jì)算得到答案;
(2)當(dāng)∠AOB第二次達(dá)到63°時(shí),射線OB在OA的左側(cè),根據(jù)∠AOM+∠BON-∠MON=63°列方程求解可得;
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線有兩種情況:
①OB平分∠AON時(shí),根據(jù)∠BON=∠AON,列方程求解;
②OB平分∠AOM時(shí),根據(jù)∠AOM=∠BOM,列方程求解.
解:(1)當(dāng)t=2時(shí),∠AOM=3°×2=6°,∠BON=6°×2=12°,
所以∠AOB=180°﹣∠AOM﹣∠BON=162°;
(2)如圖,
根據(jù)題意知:∠AOM=3t,∠BON=6t,
當(dāng)∠AOB第二次達(dá)到63°時(shí),∠AOM+∠BON﹣∠MON=63°,
即3t+6t﹣180=63,解得:t=27.
故t=27秒時(shí),∠AOB第二次達(dá)到63°.
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(大于0°而小于180°)的平分線有以下兩種情況:
①OB平分∠AON時(shí),
∵∠BON=∠AON,
∴6t=(180﹣3t),
解得:t=12;
②OB平分∠AOM時(shí),
∵∠AOM=∠BOM,
∴t=180﹣6t,
解得:t=24.
綜上,當(dāng)t的值分別為12、24秒時(shí),射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y = x2 - 4x + 3.
(1)用配方法將y = x2 - 4x + 3化成y = a(x - h)2 + k的形式;
(2)在平面直角坐標(biāo)系中畫(huà)出該函數(shù)的圖象;
(3)當(dāng)0≤x≤3時(shí),y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,點(diǎn)為邊中點(diǎn),點(diǎn)為邊中點(diǎn);點(diǎn), 為邊三等分點(diǎn), , 為邊三等分點(diǎn).小瑞分別用不同的方式連接矩形對(duì)邊上的點(diǎn),如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過(guò)程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對(duì)四邊形面積的探究如下. 請(qǐng)你將小瑞的思路填寫(xiě)完整:
設(shè),
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫(xiě)“”,“”或“”)
(2)小瑞又按照?qǐng)D4的方式連接矩形對(duì)邊上的點(diǎn).則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下表:
序號(hào) | 1 | 2 | 3 | … |
圖形 |
|
|
| … |
我們把某格中字母和所得到的多項(xiàng)式稱為“特征多項(xiàng)式”,例如第1格的“特征多項(xiàng)式”為.
回答下列問(wèn)題:
(1)第3格的“特征多項(xiàng)式”為____________,
第4格的“特征多項(xiàng)式”為____________,
第格的“特征多項(xiàng)式”為____________;
(2)若第1格的“特征多項(xiàng)式”的值為10,第2格的“特征多項(xiàng)式”的值為19,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)1至2019按照一定規(guī)律排成下表:
記aij表示第i行第j個(gè)數(shù),如a14=4表示第1行第4個(gè)數(shù)是4.
(1)直接寫(xiě)出a42= ,a53= ;
(2)①如果aij=2019,那么i= ,j= ;②用i,j表示aij= ;
(3)將表格中的5個(gè)陰影格子看成一個(gè)整體并平移,所覆蓋的5個(gè)數(shù)之和能否等于2027.若能,求出這5個(gè)數(shù)中的最小數(shù),若不能說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形,,.動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),以的速度向點(diǎn)、運(yùn)動(dòng),連接、,取、的中點(diǎn)、,連接、.設(shè)運(yùn)動(dòng)的時(shí)間為.
(1)求證:;
(2)當(dāng)為何值時(shí),四邊形為菱形;
(3)試探究:是否存在某個(gè)時(shí)刻,使四邊形為矩形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,AB表示A點(diǎn)和B點(diǎn)之間的距離,C是AB的中點(diǎn),且a、b滿足|a+3|+(b+3a)2=0.
(1)求點(diǎn)C表示的數(shù);
(2)點(diǎn)P從A點(diǎn)以3個(gè)單位每秒向右運(yùn)動(dòng),點(diǎn)Q同時(shí)從B點(diǎn)以2個(gè)單位每秒向左運(yùn)動(dòng),若AP+BQ=2PQ,求時(shí)間t;
(3)若點(diǎn)P從A向右運(yùn)動(dòng),點(diǎn)M為AP中點(diǎn),在P點(diǎn)到達(dá)點(diǎn)B之前:①的值不變;②2BM﹣BP的值不變,其中只有一個(gè)正確,請(qǐng)你找出正確的結(jié)論并求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖①擺放,點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過(guò)點(diǎn)C.
(1)求∠ADE的度數(shù);
(2)如圖②,將△DEF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角,此時(shí)等腰直角三角尺記為, 交AC于點(diǎn)M, 交BC于點(diǎn)N,試判斷的值是否隨著的變化而變化?如果不變,請(qǐng)求出的值;反之,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC=7cm,CD=5cm,P、Q兩點(diǎn)分別從B、C兩點(diǎn)同時(shí)出發(fā),沿矩形ABCD的邊以1cm/s的速度逆時(shí)針運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).當(dāng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為_s時(shí),△PQC為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com