【題目】如圖,直線l1:y=mx+4m與x軸負半軸、y軸正半軸分別交于A、B兩點.
(1)如圖(1),當OA=OB時,求直線l1的解析式;
(2)如圖(2),當m取不同的值時,點B在y軸正半軸上運動,分別以OB、AB為腰,點B為直角頂點在第一、二象限作等腰直角△OBF和等腰直角△ABE,連接EF交y軸于點P,試猜想PB的長是否為定值?若是,求出其值;若不是,說明理由.
(3)m取不同的值時,點B在y軸正半軸上運動,以AB為腰,點B為直角頂點在第二象限作等腰直角△ABD,滿足條件的動點D在直線l2上運動,直線l2與x軸和y軸分別交于F、H兩點,若直線l1將△OHF分成面積比為m:1的兩部分,求此時直線l1和直線l2的解析式.
【答案】(1)y=x+4;(2)PB的長為定值,理由見解析;(3)直線l1的解析式為:y=x+6-2,直線l2的解析式為:y=-x+4
【解析】
(1)由直線解析式,求出A與B坐標,根據(jù)OA=OB,求出m的值,即可確定出直線L解析式;
(2)過點E作EG⊥y軸于G點,先證明△ABO≌△EGB,從而得到BG=4,然后證明△BFP≌△GEP,從而得到BP=GP=BG;
(3)如圖③,由A(-4,0),B(0,4m),得到OA=BG=4,DG=OB=4m,得到點D(-4m,4m+4),于是求得直線的解析式為:根據(jù)三角形的面積公式列方程即可得到結論.
解:(1)∵直線l1:y=mx+4m與x軸負半軸、y軸正半軸分別交于A、B兩點,
∴A(-4,0),B(0,4m),
由OA=OB,得4m=4,m=1,
∴直線解析式為:y=x+4;
(2)PB的長為定值.
理由:如圖②所示:過點E作EG⊥y軸于G點.
∵△AEB為等腰直角三角形,
∴AB=EB,∠ABO+∠EBG=90°.
∵EG⊥BG,
∴∠GEB+∠EBG=90°.
∴∠ABO=∠GEB.
在△ABO和△EGB中,,
∴△ABO≌△EGB.(AAS)
∴BG=AO=4,OB=EG
∵△OBF為等腰直角三角形,
∴OB=BF
∴BF=EG.
在△BFP和△GEP中,,
∴△BFP≌△GEP.(AAS)
∴BP=GP=BG=2是定值;
(3)如圖③,
∵A(-4,0),B(0,4m),
由(2)證得OA=BG=4,DG=OB=4m,
∴OG=OB+BG=4m+4,
∴點D(-4m,4m+4),
∵動點D在直線y=-x+4上運動,
∴直線l2的解析式為:y=-x+4,
∴F(4.0),H(0,4),
∴S△OHF=×4×4=8,
設直線l1和直線l2的交點為K,
解得,,
∴K(,),
∵直線l1將△OHF分成面積比為m:1的兩部分,
∴當S△HBK:S四邊形OFKB=m:1時,
S△HBK=(4-4m)=8×,
解得:m=,m=,
當S△HBK:S四邊形OFKB=1:m時,
S△HBK=(4-4m)=8×,
解得:m=2,m=0,
∵4m<4,且m≠0,
∴m=,
∴直線l1的解析式為:y=x+6-2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運費,市場可以調(diào)用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): , ,結果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師想知道學生們每天在上學的路上要花多少時間,于是讓大家將每天來校上課的單程時間寫在紙上.下面是全班30名學生單程所花的時間(單位:min):
20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.
(1)用表格將上述數(shù)據(jù)加以整理;
(2)畫出學生上學單程所花時間與次數(shù)的條形統(tǒng)計圖;
(3)根據(jù)調(diào)查結果,計算每天單程20min到校的學生有多少名?占全班學生人數(shù)的百分比是多少?你認為老師還能獲得哪些信息?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小冬與小夏是某中學籃球隊的隊員,在最近五場球賽中的得分如下表所示:
第一場 | 第二場 | 第三場 | 第四場 | 第五場 | |
小冬 | |||||
小夏 |
(1)根據(jù)上表所給的數(shù)據(jù),填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
小冬 | ||||
小夏 |
(2)根據(jù)以上信息,若教練選擇小冬參加下一場比賽,教練的理由是什么?
(3)若小冬的下一場球賽得分是分,則在小冬得分的四個統(tǒng)計量中(平均數(shù)、中位數(shù)、眾數(shù)與方差)哪些發(fā)生了改變,改變后是變大還是變。浚ㄖ灰卮鹗“變大”或“變小”)()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 三個頂點的坐標分別為 A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC 向左平移 5 個單位長度后得到的△A1B1C1;
(2)在 x 軸上求作一點 P,使△PAB 的周長最小,請畫出△PAB,并直接寫出 P 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.
(1)根據(jù)圖示填寫下表:
班級 | 中位數(shù)(分) | 眾數(shù)(分) |
九(1) | 85 | |
九(2) | 100 |
(2)通過計算得知九(2)班的平均成績?yōu)?/span>85分,請計算九(1)班的平均成績.
(3)結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好.
(4)已知九(1)班復賽成績的方差是70,請計算九(2)班的復賽成績的方差,并說明哪個班的成績比較穩(wěn)定?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com