【題目】如圖,反比例函數(shù)的圖象與直線y=3x相交于點(diǎn)C,過(guò)直線上點(diǎn)A(1,3)作AB⊥x軸于點(diǎn)B,交反比例函數(shù)圖象于點(diǎn)D,且AB=3BD.
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo);
(3)在y軸上確定一點(diǎn)M,使點(diǎn)M到C,D兩點(diǎn)距離之和d=MC+MD最小,求點(diǎn)M的坐標(biāo).
【答案】(1);(2)C(,);(3)M(0,)
【解析】
(1)由條件可求得D點(diǎn)坐標(biāo),則可求得反比例函數(shù)解析式;
(2)聯(lián)立直線與反比例函數(shù)解析式可求得C點(diǎn)坐標(biāo);
(3)找C點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為C′,連接C′D交y軸于點(diǎn),由對(duì)稱的性質(zhì)可知M點(diǎn)即為所求的點(diǎn).
(1)∵A(1,3),AB⊥x軸于點(diǎn)D,
∴AB=3,OB=1,
∵AB=3BD,
∴BD=1,
∴D(1,1),
∵點(diǎn)D在反比例函數(shù)圖象上,
∴1=,解得k=1,
∴反比例函數(shù)解析式為y=;
(2)聯(lián)立直線與反比例函數(shù)解析式可得
,解得或,
∵點(diǎn)C在第一象限,
∴C點(diǎn)坐標(biāo)為:(,);
(3)設(shè)點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)為C′,
∴C′(-,),
連接C′D交y軸于點(diǎn)M,
′
則MC=MC′,
∴d=MC+MD=MC′+MD=DC′,
∴點(diǎn)M即為滿足條件的點(diǎn),
設(shè)直線C′D解析式為y=mx+n,
把C′、D的坐標(biāo)代入可得,解得,
∴直線C′D的解析式為y=(3-2)x+(2-2),
令x=0可得y=2-2,
∴M(0,2-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車(chē)先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;
(3)乙出發(fā)后多長(zhǎng)時(shí)間與甲在途中相遇?
(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過(guò)原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對(duì)稱軸為直線x=-2,點(diǎn)C在拋物線上,且位于點(diǎn)A、B之間(C不與A、B重合).若△ABC的周長(zhǎng)為a,則四邊形AOBC的周長(zhǎng)為________(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),函數(shù)和的圖象上,分別有A.B兩點(diǎn),若AB∥x軸且交y軸于點(diǎn)C,且OA⊥OB,S△AOC=,S△BOC=,則線段AB的長(zhǎng)度為( )
A.B.C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過(guò)點(diǎn)C作BD的平行線,過(guò)點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=2,DE=3,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,P為邊CD上一點(diǎn),把△BCP沿直線BP折疊,頂點(diǎn)C折疊到C′,連接BC′與AD交于點(diǎn)E,連接CE與BP交于點(diǎn)Q,若CE⊥BE.
(1)求證:△ABE∽△DEC;
(2)當(dāng)AD=13時(shí),AE<DE,求CE的長(zhǎng);
(3)連接C′Q,直接寫(xiě)出四邊形C′QCP的形狀:______.當(dāng)CP=4時(shí),并求CEEQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com