【題目】現(xiàn)場學(xué)習(xí)題:問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

1)請你將△ABC的面積直接填寫在橫線上.   

思維拓展:(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為、、a0),請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積是:   

【答案】12.5;(2)見解析,3a2

【解析】

1)把△ABC所在長方形畫出來,再用矩形的面積減去周圍多余三角形的面積即可

2是直角邊長為a、a的直角三角形的斜邊;是直角邊長為4a,2a的直角三角形的斜邊;是直角邊長為a5a的直角三角形的斜邊,把它整理為一個矩形的面積減去三個直角三角形的面積.

1SABC4×2×4×1×1×1×2×32.5

2SABC5a×2a×a×a×2a×4a×a×5a3a2;

故答案為:2.5;3a2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高鐵給我們的出行帶來了極大的方便.如圖,和諧號高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結(jié)果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形OABC的頂點Ax軸上,頂點Cy軸上,OA18,OC12D、E分別為OA、BC上的兩點,將長方形OABC沿直線DE折疊后,點A剛好與點C重合,點B落在點F處,再將其打開、展平.

1)點B的坐標(biāo)是   ;

2)求直線DE的函數(shù)表達式;

3)設(shè)動點P從點D出發(fā),以1個單位長度/秒的速度沿折線D→A→B→C向終點C運動,運動時間為t秒,求當(dāng)SPDE2SOCDt的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BEAD交于點F.

(1)求證:ABF≌△EDF;

(2)若AB=6,BC=8,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC的平分線交AABC的外接圓于點D,交BC于點F,ABC的平分線交AD于點E.

(1)求證:DE=DB.

(2)若∠BAC=90°,BD=4,求ABC外接圓的半徑;

(3)若BD=6,DF=4,求AD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P、Q分別是⊙O的內(nèi)接正六邊形ABCDEF的邊ABBC上的點,AP=BQ,則∠POQ的度數(shù)為___°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線ABy軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)AOC的面積;

(3)求不等式kx+b-<0的解集(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:

信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;

信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.

根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.

(1)求m的值及一次函數(shù)解析式;

(2)P是線段AB上的一點,連接PC、PD,若△PCA△PDB面積相等,求點P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案