【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.

(1)求m的值及一次函數(shù)解析式;

(2)P是線段AB上的一點,連接PC、PD,若△PCA△PDB面積相等,求點P坐標.

【答案】(1)一次函數(shù)的解析式為y=x+;(2)P點坐標是(﹣,).

【解析】

(1)利用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式;
(2)設點P的坐標為根據(jù)面積公式和已知條件列式可求得的值,并根據(jù)條件取舍,得出點P的坐標.

解:(1)∵反比例函數(shù)的圖象過點

∵點B(﹣1,m)也在該反比例函數(shù)的圖象上,

﹣1m=﹣2,

m=2;

設一次函數(shù)的解析式為y=kx+b,

y=kx+b的圖象過點A,B(﹣1,2),則

解得:

∴一次函數(shù)的解析式為

(2)連接PC、PD,如圖,設

∵△PCA和△PDB面積相等,

解得:

P點坐標是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)場學習題:問題背景:在△ABC中,ABBC、AC三邊的長分別為、,求這個三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

1)請你將△ABC的面積直接填寫在橫線上.   

思維拓展:(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為、、a0),請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積是:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB4,AD3,ABAD ,BC12

1)求BD的長;

2)當CD為何值時,BDC是以CD為斜邊的直角三角形?

3)在(2)的條件下,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20181023日,港珠澳大橋正式開通.港珠澳大橋東起香港口岸人工島,向西止于珠海洪灣,總長約55千米,是粵港澳三地首次合作共建的超大型跨海交通工程.1024日正式通車當天,甲乙兩輛巴士同時從香港國際機場附近的香港口岸人工島出發(fā),已知甲乙兩巴士的速度比是,乙巴士比甲巴士早11分鐘到達洪灣,求兩車的平均速度各是多少千米/時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DEACE.

(1)求證:DE為⊙O的切線;

(2)GED上一點,連接BE交圓于F,連接AF并延長交EDG.若GE=2,AF=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,AD=24 cm,AB=8 cm, BC=26 cm,動點PA開始沿AD邊向D1cm/s的速度運動;Q從點C開始沿CB邊向B3 cm/s的速度運動.P、Q分別從點AC同時出發(fā),當其中一點到達端點時,另外一點也隨之停止運動.

1)當運動時間為t秒時,用含t的代數(shù)式表示以下線段的長: AP=________, BQ=__________;

2)當運動時間為多少秒時,四邊形PQCD為平行四邊形?

3)當運動時間為多少秒時,四邊形ABQP為矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+3與兩坐標軸交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且交x軸的正半軸于點C.

(1)求A、B兩點的坐標;

(2)求拋物線的解析式和點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解答問題:

問題:分解因式:.

解答:把帶入多項式,發(fā)現(xiàn)此多項式的值為0,由此確定多項式中有因式,于是可設,分別求出的值.再代入,就容易分解多項式,這種分解因式的方法叫做試根法”.

1)求上述式子中,的值;

2)請你用試根法分解因式:.

查看答案和解析>>

同步練習冊答案