【題目】在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O在原點(diǎn)。
(1)如圖①,點(diǎn)C的坐標(biāo)為(,),且實(shí)數(shù),滿足,求C點(diǎn)的坐標(biāo)及線段0C的長(zhǎng)度;
(2)如圖②,點(diǎn)F在BC上,AB交x軸于點(diǎn)E,EF,OC的延長(zhǎng)線交于點(diǎn)G,EG=OG,求∠EOF的度數(shù);
(3)如圖③,將(1)中正方形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使OA落在y軸上,E為AB上任意一點(diǎn),OE的垂直平分線交x軸于點(diǎn)G,交OE于點(diǎn)P,連接EG交BC于點(diǎn)F,求△BEF的周長(zhǎng)。
【答案】(1) (2)45°(3)2
【解析】分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)和二次根式有意義的條件可得b=3,a=-1,即可的點(diǎn)C的坐標(biāo),再由勾股定理求得OC的長(zhǎng);(2)過(guò)點(diǎn)O作OH⊥EF于H,證明△OEA≌△OEH和 Rt△OHF≌Rt△OCF,根據(jù)全等三角形的性質(zhì)可得∠3=∠4,∠5=∠6,又因∠3+∠4+∠5+∠6=∠AOC=90°,即可求得∠EOF=45°;(3)過(guò)點(diǎn)O作OH⊥EF于H,連OF,證明△OEA≌△OEH和Rt△OHF≌Rt△OCF,根據(jù)全等三角形的性質(zhì)可得AE=EH,OH=OA,HF=FC,即可得△BEF的周長(zhǎng)=BE+EH+HF+BF=BE+AE+CF+BF=AB+BC=2.
詳解:
(1)∵b-3≥0,3-b≥0,
∴b=3,a=-1,
∴C(-1,3).
過(guò)C作CD垂直y軸于點(diǎn)D,則OD=3,DC=1,
∴OC=;
(2)過(guò)點(diǎn)O作OH⊥EF于H,
∵四邊形OABC是正方形,
∴OA=OC,∠A=∠7=∠AOC=90°,AB∥CO,
∴∠2=∠COE又EG=OG,
∴∠1=∠COE,
∴∠1=∠2,
又OH⊥EF,
∴∠9=∠8=∠A=90°,
∴在△OEA和△OEH中,
,
∴△OEA≌△OEH(AAS),
∴∠3=∠4,OH=OA;
又OA=OC,
∴OH=OC,
又∠9=∠7=90°,
∴在Rt△OHF和Rt△OCF中,
,
∴Rt△OHF≌Rt△OCF(HL),
∴∠5=∠6,
又∠3+∠4+∠5+∠6=∠AOC=90°,
∴2∠4+2∠5=90°,
即∠4+∠5=45°,
即∠EOF=45°;
(3)過(guò)點(diǎn)O作OH⊥EF于H,連OF,
∵四邊形OABC是正方形,
∴OA=OC,∠10=∠7=∠AOC=90°,AB∥CO,
∴∠2=∠COE又PG垂直平分OE,
∴EG=OG,
∴∠1=∠COE,
∴∠1=∠2 ,
又OH⊥EF,
∴∠9=∠8=∠10=90°,
∴在△OEA和△OEH中,
∴△OEA≌△OEH(AAS);
∴AE=EH,OH=OA,
又OA=OC,
∴OH=OC,
又∠9=∠7=90°,
∴在Rt△OHF和Rt△OCF中,
,
∴Rt△OHF≌Rt△OCF(HL);
∴HF=FC,
∴△BEF的周長(zhǎng)=BE+EH+HF+BF
=BE+AE+CF+BF
=AB+BC
=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤為一次游戲,當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,將此正方形置于平面直角坐標(biāo)系中,使AB邊落在X軸的正半軸上,且A點(diǎn)的坐標(biāo)是(1,0).
(1)直線經(jīng)過(guò)點(diǎn)C,且與x軸交與點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過(guò)點(diǎn)F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個(gè)單位交軸x于點(diǎn)M,交直線l1于點(diǎn)N,求△NMF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E,F(xiàn)分別在AB、CD上,AE=CF ,且DF=BF; 求證:四邊形DEBF為菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AP垂直∠ABC的平分線BP于點(diǎn)P.若△ABC的面積為32cm2,BP=6cm,且△APB的面積是△APC的面積的3倍.則AP=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩點(diǎn)在一次函數(shù)圖象上的位置如圖所示,兩點(diǎn)的坐標(biāo)分別為A(x+a,y+b),B(x,y),下列結(jié)論正確的是( )
A.a>0
B.a<0
C.b=0
D.ab<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,經(jīng)過(guò)原點(diǎn)的拋物線的解析式可以是y=ax2+bx(a≠0)
(1)對(duì)于這樣的拋物線:
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a=;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a與m之間的關(guān)系式是
(2)繼續(xù)探究,如果b≠0,且過(guò)原點(diǎn)的拋物線頂點(diǎn)在直線y=kx(k≠0)上,請(qǐng)用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過(guò)原點(diǎn)的拋物線,頂點(diǎn)A1 , A2 , …,An在直線y=x上,橫坐標(biāo)依次為1,2,…,n(為正整數(shù),且n≤12),分別過(guò)每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1 , B2 , …,Bn , 以線段AnBn為邊向右作正方形AnBnCnDn , 若這組拋物線中有一條經(jīng)過(guò)Dn , 求所有滿足條件的正方形邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時(shí)后到達(dá)南亞所(景點(diǎn)),游玩一段時(shí)間后按原速前往湖光巖.小明離家1小時(shí)50分鐘,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程y(km)與小明離家時(shí)間x(h)的函數(shù)圖象.
(1)求小明騎車的速度和在南亞所游玩的時(shí)間;
(2)若媽媽在出發(fā)后25分鐘時(shí),剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平面直角坐標(biāo)系中,A(a,3)、B(b,6)、C(c,1),a、b、c都為實(shí)數(shù),并且滿足3b-5c=-2a-18,4b-c=3a+10
(1) 請(qǐng)直接用含a的代數(shù)式表示b和c
(2) 當(dāng)實(shí)數(shù)a變化時(shí),判斷△ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍
(3) 當(dāng)實(shí)數(shù)a變化時(shí),若線段AB與y軸相交,線段OB與線段AC交于點(diǎn)P,且S△PAB>S△PBC,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com