【題目】甲、乙兩臺智能機器人從同一地點出發(fā),沿著筆直的路線行走了450cm.甲比乙先出發(fā),并且勻速走完全程,乙出發(fā)一段時間后速度提高為原來的2倍.設(shè)甲行走的時間為x(s),甲、乙行走的路程分別為y1(cm)、y2(cm),y1、y2與x之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)乙比甲晚出發(fā) s,乙提速前的速度是每秒 cm,m= ,n= ;
(2)當(dāng)x為何值時,乙追上了甲?
(3)在乙提速后到甲、乙都停止的這段時間內(nèi),當(dāng)甲、乙之間的距離不超過20cm時,求x的取值范圍.
【答案】(1)15;15;31;45;(2)24秒(3)23≤x≤25或43≤x≤45
【解析】分析:(1)根據(jù)圖象x=15時,y=0知乙比甲晚15s;由x=17時y=30,求得提速前速度;根據(jù)時間=路程÷速度可求提速后所用時間,即可得到m值,進(jìn)而得出n的值;
(2)乙追上甲即行走路程y相等,求圖象上OA與BC相交時x的值;
(3)根據(jù)題意列出不等式解答即可.
詳解:(1)由題意可知,當(dāng)x=15時,y=0,故乙比甲晚出發(fā)15秒;
當(dāng)x=15時,y=0;當(dāng)x=17時,y=30;故乙提速前的速度是(cm/s);
∵乙出發(fā)一段時間后速度提高為原來的2倍,
∴乙提速后速度為30cm/s,
故提速后乙行走所用時間為:(s),
∴m=17+14=31(s)
n==45;
故答案為:15;15;31;45;
(2)設(shè)OA段對應(yīng)的函數(shù)關(guān)系式為y=kx,
∵A(31,310)在OA上,
∴31k=310,解得k=10,
∴y=10x.
設(shè)BC段對應(yīng)的函數(shù)關(guān)系式為y=k1x+b,
∵B(17,30)、C(31,450)在BC上,
∴,解得,
∴y=30x-480,
由乙追上了甲,得10x=30x-480,解得x=24.
答:當(dāng)x為24秒時,乙追上了甲.
(3)若y1-y2≤20,即10x-30x+480≤20,
解得:23≤x≤24,
若y2-y1≤20,即30x-480-10x≤20,
解得:24≤x≤25,
若450-y1≤20,即450-10x≤20,
解得:43≤x≤45,
綜上所述,當(dāng)23≤x≤25或43≤x≤45時,甲、乙之間的距離不超過20cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍自制的勻速直線運動遙控車模型甲、乙兩車同時分別從、出發(fā),沿直線軌道同時到達(dá)處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離、(米)與時間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60米/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時,兩車信號不會產(chǎn)生互相干擾,則兩車信號不會產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀,兩種型號的機器人的工作效率和價格如表:
型號 | 甲 | 乙 |
每臺每小時分揀快遞件數(shù)(件) | 1000 | 800 |
每臺價格(萬元) | 5 | 3 |
該公司計劃購買這兩種型號的機器人共10臺,并且使這10臺機器人每小時分揀快遞件數(shù)總和不少于8500件
(1)設(shè)購買甲種型號的機器人x臺,購買這10臺機器人所花的費用為y萬元,求y與x之間的關(guān)系式;
(2)購買幾臺甲種型號的機器人,能使購買這10臺機器人所花總費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點在線段上,且,,點、分別是、的中點,求線段的長度;
(2)若點是線段上任意一點,且,,點、分別是、的中點,請直接寫出線段的長度;(結(jié)果用含、的代數(shù)式表示)
(3)在(2)中,把點是線段上任意一點改為:點是直線上任意一點,其他條件不變,則線段的長度會變化嗎?若有變化,求出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)y=(k>0)的圖象經(jīng)過BC邊的中點D(3,1).
(1)求這個反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“快樂分式”.如:,則 是“快樂分式”.
(1)下列式子中,屬于“快樂分式”的是 (填序號);
① ,② ,③ ,④ .
(2)將“快樂分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為: = .
(3)應(yīng)用:先化簡 ,并求x取什么整數(shù)時,該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中的信息求出_______,_______;
(2)請你幫助他們將這兩個統(tǒng)計圖補全,并計算扇形統(tǒng)計圖中“支付寶”部分所對應(yīng)的圓心角的度數(shù)為_____;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com