【題目】已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=76°,C為⊙O上一點(diǎn).
(Ⅰ)如圖①,求∠ACB的大小;
(Ⅱ)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D,若AB=AD.求∠EAC的大小.
【答案】(1)52°;(2)19°.
【解析】
(Ⅰ)連接OA、OB,根據(jù)切線的性質(zhì)得到∠OAP=∠OBP=90°,根據(jù)四邊形內(nèi)角和等于360°求出∠BOA的度數(shù),再根據(jù)圓周角定理可求出∠ACB的度數(shù);
(Ⅱ)連接CE,根據(jù)圓周角定理得到∠ACE=90°,進(jìn)而求出∠BCE和∠BAE的度數(shù),根據(jù)等腰三角形的性質(zhì)求∠ABD=∠ADB的度數(shù),再根據(jù)三角形的外角性質(zhì)計(jì)算即可.
解:(Ⅰ)如圖,連接OA、OB,
∵PA,PB是⊙O的切線,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°﹣90°﹣90°﹣76°=104°,
由圓周角定理得,∠ACB=∠AOB=52°;
(Ⅱ)如圖,連接CE,
∵AE為⊙O的直徑,
∴∠ACE=90°,
∵∠ACB=52°,
∴∠BCE=90°﹣52°=38°,
∴∠BAE=∠BCE=38°,
∵AB=AD,
∴∠ABD=∠ADB=71°,
∴∠EAC=∠ADB﹣∠ACB=71°-52°=19°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒(méi)有獎(jiǎng)品。
(1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用“畫樹(shù)狀圖”或“列表”等方法寫出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生對(duì)毒品危害性的認(rèn)識(shí),我市相關(guān)部門每個(gè)月都要對(duì)學(xué)生進(jìn)行“禁毒知識(shí)應(yīng)知應(yīng)會(huì)”測(cè)評(píng).為了激發(fā)學(xué)生的積極性,某校對(duì)達(dá)到一定成績(jī)的學(xué)生授予“禁毒小衛(wèi)士”的榮譽(yù)稱號(hào).為了確定一個(gè)適當(dāng)?shù)莫?jiǎng)勵(lì)目標(biāo),該校隨機(jī)選取了七年級(jí)20名學(xué)生在5月份測(cè)評(píng)的成績(jī).數(shù)據(jù)如下:
收集數(shù)據(jù):90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
整理、描述數(shù)據(jù):
成績(jī)/分 | 88 | 89 | 90 | 91 | 95 | 96 | 97 | 98 | 99 |
學(xué)生人數(shù) | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
數(shù)據(jù)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)如下表
平均數(shù) | 眾數(shù) | 中位數(shù) |
93 |
應(yīng)用數(shù)據(jù)
(1)由上表填空:________,________,________,________,
(2)根據(jù)所給數(shù)據(jù),如果該校想確定七年級(jí)前的學(xué)生為“良好”等次,你認(rèn)為“良好”等次的測(cè)評(píng)成績(jī)至少定為________分.
(3)根據(jù)數(shù)據(jù)分析,該校決定在七年級(jí)授予測(cè)評(píng)成績(jī)前的學(xué)生“禁毒小衛(wèi)士”榮譽(yù)稱號(hào).請(qǐng)估計(jì)評(píng)選該榮譽(yù)稱號(hào)的最低分?jǐn)?shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長(zhǎng)為2,DE是它的中位線,則下面五個(gè)結(jié)論:①.DE=1②.△CDE∽△CAB ③△CDE 的面積與四邊形ABED的面積之比為1:3 ④梯形ABED的中位線長(zhǎng)為 ⑤. DG:GB=1:2 ,其中正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m22=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,BC=4,E,F分別是AB,AC的中點(diǎn),動(dòng)點(diǎn)P在直線EF上,∠CBP的平分線交CE于點(diǎn)Q,當(dāng)點(diǎn)Q把線段EC分成的兩線段之比是1:2時(shí),線段EP、BP滿足的數(shù)量關(guān)系是__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸相交于點(diǎn)(0,3),并經(jīng)過(guò)點(diǎn)(2,5),它的對(duì)稱軸是x=1,如圖為函數(shù)圖象的一部分.
(1)求函數(shù)解析式,寫出函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)在圖中,畫出函數(shù)圖象的其余部分;
(3)如果點(diǎn)P(n,2n)在上述拋物線上,求n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com