【題目】如圖,平面直角坐標(biāo)系中,A0a)、Bb1,0),且ab滿足a212a360,

1)求AB兩點(diǎn)的坐標(biāo);

2)點(diǎn)C在線段BO上(C不與端點(diǎn)BO重合),點(diǎn)D在線段AO上(D不與端點(diǎn)AO重合),連CD,過(guò)DCD的垂線交ABP,若BC2DO,設(shè)C點(diǎn)橫坐標(biāo)為t,求P點(diǎn)橫坐標(biāo)(用含t的代數(shù)式表示).

3)在(2)的條件下,連BD, 點(diǎn)NBO中點(diǎn),NMBO,交BD于點(diǎn)M,連AM,若BDPB,求AM的長(zhǎng).

【答案】1A(0,6)B(6,0);(2)點(diǎn)P的橫坐標(biāo)為;(3AM=6;

【解析】

(1)由條件可得,求出a=6,b=5,則A、B兩點(diǎn)的坐標(biāo)可求;

2)過(guò)點(diǎn)PPE0A于點(diǎn)E,證明,設(shè)PE=x,則,得出方程可求出x=,則P點(diǎn)的橫坐標(biāo)可求出;

3)求出直線AB的解析式,由(2)可知點(diǎn)P(),由PB=BD可求出,則.M(3,),則AM的長(zhǎng)可求出;

解:

1)∵a212a360,

,

a-6=0b-5=0,

a=6b=5,

.A(06),B(6,0)

2)過(guò)點(diǎn)PPEOA于點(diǎn)E,

C點(diǎn)橫坐標(biāo)為tBC=2DO,

DO=

PDDC,

∴∠PDC=90°,

∴∠PED=PDC=DOC=90°,

∴∠PDE=DCO,

,

,

設(shè)PE=x,則AE=x,DE=

,

t-6,

即點(diǎn)P的橫坐標(biāo)為;

3)∵A(06),B(6,0),

∴設(shè)直線AB的解析式為y=kx+b,

解得,

∴直線AB的解析式為y=-x+6

由(2)得點(diǎn)P(,)

D0,),B6,0),

,

PB=BD

,

,

解得(負(fù)值舍去),

∵點(diǎn)NBO中點(diǎn),NMBO,

MBD的中點(diǎn),

D(0,),B(60),

.M(3,),

,

AM=6;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①是一個(gè)重要公式的幾何解釋.請(qǐng)你寫出這個(gè)公式;

(2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點(diǎn)在一條直線上.試證明∠ACE=90°;

(3)伽菲爾德(G a rfield,1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試該證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),有相互平行的三條直線ab,c,且a,b之間的距離為1,bc之間的距離是2,若等腰RtABC的三個(gè)頂點(diǎn)恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACBC,∠ACB90°AE平分∠BACBCE,BDAEAE延長(zhǎng)線于D,DFACAC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:① FDC22; 2BDAE;③ ACCEAB ABBC2FC.其中正確的結(jié)論有( 個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠A=∠C,點(diǎn)DAC上,點(diǎn)EBC上,AD=CEBCDC

1)求證:DBDE

2)如圖2,若∠ABC90°,求∠BED的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AD是∠BAC的平分線,GAD上一點(diǎn),且AG=DG,連接BG并延長(zhǎng)BGACE,又過(guò)CAD的垂線交ADH,交ABF,則下列說(shuō)法:

DBC的中點(diǎn);

BEAC;

③∠CDA>∠2

④△AFC為等腰三角形;

⑤連接DF,若CF=6,AD=8,則四邊形ACDF的面積為24

其中正確的是________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

關(guān)于x的方程:x+c+的解為x1c,x2;xc(可變形為x+c+)的解為x1c,x2;x+c+的解為x1cx2 Zx+c+的解為x1c,x2Z.

1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+c+m0)的解為   

2)應(yīng)用結(jié)論:解關(guān)于y的方程ya

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來(lái)證明勾股定理,過(guò)程如下

如圖(1)∠DAB=90°,求證:a2+b2=c2

證明:連接DB,過(guò)點(diǎn)DDFBCBC的延長(zhǎng)線于點(diǎn)F,則DF=b-a

S四邊形ADCB=

S四邊形ADCB=

化簡(jiǎn)得:a2+b2=c2

請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2

查看答案和解析>>

同步練習(xí)冊(cè)答案