【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,求弦DC的長(zhǎng).
【答案】
【解析】
根據(jù)直徑所對(duì)的圓周角是直角,可得∠BAD=∠BCD=90°;然后求出∠CAD=30°,利用同弧所對(duì)的圓周角相等,求出∠CBD=∠CAD=30°;根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),求出∠BDC=60°;再根據(jù)等弦所對(duì)的圓周角相等,求出∠ADB=∠ADC,從而求出∠ADB=30°;解直角三角形求出BD;再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答即可.
解:∵BD為⊙O的直徑,
∴∠BAD=∠BCD=90°,
∵∠BAC=120°,
∴∠CAD=120°﹣90°=30°,
∴∠CBD=∠CAD=30°,
又∵∠BAC=120°,
∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,
∵AB=AC,
∴∠ADB=∠ADC,
∴∠ADB=∠BDC=×60°=30°,
在Rt△ABD中,AB=AD=×6=2 ,BD=2AB=4,
在Rt△BCD中,CD= BD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是等邊△ABC邊AD上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC、BC上,則CE:CF=( )
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線 y=x2+bx+c 與 y 軸交于點(diǎn) C,與 x 軸交于點(diǎn) A 和點(diǎn)B(其中點(diǎn) A 在 y 軸左側(cè),點(diǎn) B 在 y 軸右側(cè)),對(duì)稱(chēng)軸直線 x=交 x 軸于點(diǎn) H.
(1)若拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(﹣4,6),求拋物線的解析式;
(2)如圖1,∠ACB=90°,點(diǎn)P是拋物線y=x2+bx+c上位于y軸右側(cè)的動(dòng)點(diǎn),且 S△ABP=S△ABC,求點(diǎn) P 的坐標(biāo);
(3)如圖 2,過(guò)點(diǎn)A作AQ∥BC交拋物線于點(diǎn)Q,若點(diǎn)Q的縱坐標(biāo)為﹣c, 求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,把一個(gè)直角三角尺ACB繞著30°角的頂點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合.
(1)三角尺旋轉(zhuǎn)了 度。
(2)連接CD,試判斷△CBD的形狀;
(3)求∠BDC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)P是等邊△ABC內(nèi)一點(diǎn),已知PA=3,PB=4,PC=5,求∠APB的度數(shù).
要直接求∠A的度數(shù)顯然很因難,注意到條件中的三邊長(zhǎng)恰好是一組勾股數(shù),因此考慮借助旋轉(zhuǎn)把這三邊集中到一個(gè)三角形內(nèi),如圖2,作∠PAD=60°使AD=AP,連接PD,CD,則△PAD是等邊三角形.
∴ =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等邊三角形
∴AC=AB,∠BAC=60°
∴∠BAP=
∴△ABP≌△ACD
∴BP=CD=4, =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如圖3,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)P是△ABC內(nèi)一點(diǎn),PA=1,PB=2,PC=3,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長(zhǎng)線交于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若BE=3,CE=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)學(xué)校積極開(kāi)展陽(yáng)光體育活動(dòng),組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問(wèn)題.
(1)求出九年級(jí)(1)班學(xué)生人數(shù);
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)求出扇形統(tǒng)計(jì)圖中3次的圓心角的度數(shù);
(4)若九年級(jí)有學(xué)生200人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo), 縱坐標(biāo)的對(duì)應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法正確的是 .
①拋物線與軸的一個(gè)交點(diǎn)為;、趻佄锞與軸的交點(diǎn)為;
③拋物線的對(duì)稱(chēng)軸是:直線; ④在對(duì)稱(chēng)軸左側(cè)隨增大而增大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com