【題目】在一個布口袋里裝有紅色、黑色、藍色和白色的小球各1個,如果閉上眼睛隨機地從布袋中取出一個球,記下顏色,放回布袋攪勻,再閉上眼睛隨機的再從布袋中取出一個球.用樹狀圖或列表法解決求:
(1)連續(xù)兩次恰好都取出白色球的概率;
(2)連續(xù)兩次恰好取出一紅、一黑的概率.
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,O為菱形ABCD的對稱中心,已知C(2,0),D(0,﹣1),N為線段CD上一點(不與C、D重合).
(1)求以C為頂點,且經過點D的拋物線解析式;
(2)設N關于BD的對稱點為N1,N關于BC的對稱點為N2,求證:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)過點N作y軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當PQ最小時點Q坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從A地到B地的公路需經過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=x-3交x軸于點B,交y軸于點C,拋物線經過點A(-1,0),B,C三點,點F在y軸負半軸上,OF=OA.
(1)求拋物線的解析式;
(2)在第一象限的拋物線上存在一點P,滿足S△ABC=S△PBC,請求出點P的坐標;
(3)點D是直線BC的下方的拋物線上的一個動點,過D點作DE∥y軸,交直線BC于點E,①當四邊形CDEF為平行四邊形時,求D點的坐標;
②是否存在點D,使CE與DF互相垂直平分?若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次考試中,某班級的數學成績統(tǒng)計圖如圖.下列說法錯誤的是( )
A. 得分在70~80分之間的人數最多 B. 該班的總人數為40
C. 得分在90~100分之間的人數最少 D. 及格(≥60分)人數是26
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3cm,BC=4cm,動點P從點B出發(fā)以2cm/s的速度向點C移動,同時動點Q從C出發(fā)以1cm/s的速度向點A移動,設它們的運動時間為t.
(1)t為何值時,△CPQ的面積等于△ABC面積的?
(2)運動幾秒時,△CPQ與△CBA相似?
(3)在運動過程中,PQ的長度能否為1cm?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;
①若∠B=90°則∠F= ;
②若∠B=a,求∠F的度數(用a表示);
(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】任何一個正整數n都可以進行這樣的分解:n=s×t(s,t是正整數,且s≤t),如果p×q在n的所有這種分解中兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=.例如18可分解成1×18,2×9,3×6這三種,這時就有F(18)==.給出下列關于F(n)的說法:
(1)F(2)=;(2)F(12)=;(3)F(27)=3;(4)若n是一個完全平方數,則F(n)=1.
其中正確說法的個數是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com