【題目】如圖,AB是⊙O的直徑,點C是弧AB的中點,D在⊙O上,延長ACBD交于點E,ADBC交于點F.若DF2,DE4,則CE的長為(

A.2B.2C.D.2

【答案】C

【解析】

“ASA”可證ACF≌△BCE,可得CFCE,AFBE,通過證明ADE∽△BDF,可得AD2DB,AE2BF,可求ACBC3CE,由勾股定理可求CE的長.

AB是⊙O的直徑,

∴∠ACB=∠ADB90°

∵點C是弧AB的中點,

ACBC,

∵∠CAD=∠CBD,且∠ACF=∠ECB,且ACBC,

∴△ACF≌△BCEASA

CFCE,AFBE

∵∠ADE=∠ADB,∠CBE=∠CAD

∴△ADE∽△BDF

,

AD2DBAE2BF,

AF+22BEDE)=2AF4

AF10BE

AE2BF,

AC+CE2BCCF

ACBC3CE

BC2+CE2BE2,

10CE2100,

CE

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的面積為15,邊ABAD2ECD中點,以AE為直徑的⊙FABG點,以EG為直徑的⊙HEBP點,回答下列問題:

1)求AB、AD的長;

2)求證:PG為⊙F的切線;

3)求PG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若雙曲線y=kx-1與直線y=-2x+102≤x≤4時有且只有一個公共點,則對k的取值要求是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,yax2+bx+c的圖象經(jīng)過點(﹣10),(m0);有如下判斷:①abc0;②b3c;③1;④|am+a|.其中正確的判斷有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:

1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;

2)如圖1,在△ABC中,ABAC,點DBC上,且CDCA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;

3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EFCD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷x件.已知產(chǎn)銷兩種產(chǎn)品的有關信息如下表:

產(chǎn)品

每件售價(萬元)

每件成本(萬元)

每年其他費用(萬元)

每年最大產(chǎn)銷量(萬元)

10

a

40

200

18

8

40+0.05x2

100

其中a為常數(shù),且5≤a≤8

1)若產(chǎn)銷甲、乙兩種產(chǎn)品的年利潤分別為y1萬元、y2萬元,直接寫出y1、y2x的函數(shù)關系式;

2)分別求出產(chǎn)銷兩種產(chǎn)品的最大年利潤;

3)為獲得最大年利潤,該公司應該選擇產(chǎn)銷哪種產(chǎn)品?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某學校有一邊長為20米的正方形區(qū)域(四周陰影是四個全等的矩形,記為區(qū)域甲;中心區(qū)是正方形,記為區(qū)域乙).區(qū)域甲建設成休閑區(qū),區(qū)域乙建成展示區(qū),已知甲、乙兩個區(qū)域的建設費用如下表:

區(qū)域

價格(百元米2

6

5

設矩形的較短邊的長為米,正方形區(qū)域建設總費用為百元.

1的長為 米(用含的代數(shù)式表示);

2)求關于的函數(shù)解析式;

3)當中心區(qū)的邊長要求不低于8米且不超過12米時,預備建設資金220000元夠用嗎?請利用函數(shù)的增減性來說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,且PA=3,PB=4,PC=5,將△ABP繞點B順時針旋轉60°到△CBQ位置.連接PQ,則以下結論錯誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標可以為( 。

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

同步練習冊答案