【題目】如圖,在正方形ABCD中,點G在邊AB上(不與點A,B重合),連接DG,作CE⊥DG于點E,AF⊥DG于點F,連接AE,CF.
(1)求證:DE=AF;
(2)若設,求的值.
【答案】(1)證明見解析;(2).
【解析】
(1) 證,即可得DE=AF.
(2)先證△AFG∽△CED,可得,根據(jù)正方形的性質等量代換得出, 根據(jù)三角函數(shù)的定義求出tanα,tanβ的比例式,直接化簡求解即可.
(1)∵四邊形ABCD是正方形
∴AD=CD,∠ADC=90°
∵CE⊥DG,AF⊥DG
∴∠AFD=∠DEC=90°
∴∠ADF+∠CDE=90°,∠DCE+∠DEC=90°
∴∠ADF=∠DCE
在中,
∴(AAS)
∴DE=AF
(2)正方形ABCD中,AB∥CD,
∴∠AGF=∠CDE.
∵∠CED=∠AFG=90°,
∴△AFG∽△CED.
∴.
∵ ,又AB=CD,∴.
∴.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知點A(1,2),B(3,2),連接AB.若對于平面內一點P,線段AB上都存在點Q,使得PQ≤2,則稱點P是線段AB的“影子”.
(1)在點C(0,1),D(2,),E(4,5)中,線段AB的”影子”是 .
(2)若點M(m,n)在直線y=-x+2上,且不是線段AB的“影子”,求m的取值范圍.
(3)若直線y=x+b上存在線段AB的“影子”,求b的取值范圍以及“影子”構成的區(qū)域面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,點O是AC的中點,點P是AC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.
(1)如圖1,請直接寫出線段OE與OF的數(shù)量關系;
(2)如圖2,當∠ABC=90°時,請判斷線段OE與OF之間的數(shù)量關系和位置關系,并說明理由
(3)若|CF﹣AE|=2,EF=2,當△POF為等腰三角形時,請直接寫出線段OP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,D為BC上一點,過點D作DE⊥AB于E.
(1)連接AD,取AD中點F,連接CF,CE,FE,判斷△CEF的形狀并說明理由
(2)若BD=CD,將△BED繞著點D逆時針旋轉n°(0<n<180),當點B落在Rt△ABC的邊上時,求出n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2 ,0)和(3 ,0)之間,對稱軸是x=1.對于下列結論:① ab<0;② 2a+b=0;③ 3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤ 當-1<x<3時,y>0. 其中正確結論的個數(shù)為( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉一定角度,在旋轉過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,弦BD=BA,EB⊥DC,交DC的延長線于點E.
(1)求證:BE是⊙O的切線;
(2)當sin∠BCE=,AB=3時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學習概率初步知識后設計了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.
(1)若每人隨機取手中的一張牌進行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當小亮的三張牌出牌順序為先出6,再出8,最后出l0時,小齊隨機出牌應對,求小齊本次比賽獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com