【題目】某中學(xué)就“戲曲進(jìn)校園”活動的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:(圖中表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”)
(1)被調(diào)查的總?cè)藬?shù)是_________,扇形統(tǒng)計(jì)圖中部分所對應(yīng)的扇形圓心角的度數(shù)為_________;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在抽取的類5人中,剛好有甲、乙、丙3個(gè)女生和丁、戊2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用畫樹狀圖或列表法求出抽到的兩個(gè)學(xué)生性別不相同的概率.
【答案】(1)50,;(2)見解析;(3)
【解析】
(1)由A類別人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以C部分人數(shù)所占比例可得;
(2)總?cè)藬?shù)減去其他類別人數(shù)求得B的人數(shù),據(jù)此即可補(bǔ)全條形圖;
(3)用樹狀圖或列表法即可求出抽到性別相同的兩個(gè)學(xué)生的概率.
(1)被調(diào)查的總?cè)藬?shù)為5÷10%=50人,
扇形統(tǒng)計(jì)圖中C部分所對應(yīng)的扇形圓心角的度數(shù)為360°×=144°.
(2)補(bǔ)全條形圖如下:
(3)畫樹狀圖如下:
由上可知,抽到的兩個(gè)學(xué)生性別不相同的概率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a,b,c為常數(shù),a<0)經(jīng)過點(diǎn)(0,2),且關(guān)于直線x=﹣1對稱,(x1,0)是拋物線與x軸的一個(gè)交點(diǎn),有下列結(jié)論,其中結(jié)論錯(cuò)誤的是( )
A.方程ax2+bx+c=2的一個(gè)根是x=﹣2
B.若x1=2,則拋物線與x軸的另一個(gè)交點(diǎn)為(﹣4,0)
C.若m=4時(shí),方程ax2+bx+c=m有兩個(gè)相等的實(shí)數(shù)根,則a=﹣2
D.若≤x≤0時(shí),2≤y≤3,則a=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn),是上一點(diǎn),經(jīng)過,兩點(diǎn)的交于點(diǎn),連接,作的平分線交于點(diǎn),連接.
(1)求證:是的切線;
(2)若,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過A,C兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)在AC上方的拋物線上有一動點(diǎn)P.
①如圖1,當(dāng)點(diǎn)P運(yùn)動到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);
②如圖2,過點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE∶OE=3∶8,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.有一寬度為1,長度足夠長的矩形(陰影部分)沿軸方向平移,與軸平行的一組對邊交拋物線于點(diǎn)和點(diǎn),交直線于點(diǎn)和點(diǎn),交軸于點(diǎn)和點(diǎn).
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)和都在線段上時(shí),連接,如果,求點(diǎn)的坐標(biāo);
(3)在矩形的平移過程中,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D為BC的中點(diǎn),動點(diǎn)E,F分別在AB,AC上,分別過點(diǎn)EG∥AD∥FH,交BC于點(diǎn)G、H,若EF∥BC,則EF+EG+FH的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備開設(shè)特色活動課,各科目的計(jì)劃招生人數(shù)和報(bào)名人數(shù),列前三位的如下表所示:
科目 | 小制作 | 足球 | 英語口語 |
計(jì)劃人數(shù) | 100 | 90 | 60 |
科目 | 小制作 | 英語口語 | 中國象棋 |
報(bào)名人數(shù) | 280 | 250 | 200 |
若計(jì)劃招生人數(shù)和報(bào)名人數(shù)的比值越大,表示學(xué)校開設(shè)該科目相對學(xué)生需要的滿足指數(shù)就越高.那么根據(jù)以上數(shù)據(jù),滿足指數(shù)最高的科目是( 。
A. 足球B. 小制作C. 英語口語D. 中國象棋
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過原點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為.
(1)求這條拋物線表達(dá)式;
(2)將該拋物線向右平移,平移后的新拋物線頂點(diǎn)為,它與軸交點(diǎn)為,聯(lián)結(jié)、,設(shè)點(diǎn)的縱坐標(biāo)為,用含的代數(shù)式表示的正切值;
(3)聯(lián)結(jié),在(2)的條件下,射線平分,求點(diǎn)到直線的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com