【題目】小歡和小麗都十分喜歡唱歌.她們兩人一起參加學(xué)校的文藝匯演.在匯演前,主持人讓她們自己確定出場(chǎng)順序,可她們倆爭(zhēng)著先出場(chǎng),最后主持人想出了一個(gè)主意,說:給你們五張卡片,每張卡片上都有一些數(shù).將化簡后的數(shù)在數(shù)軸上表示出來,再用連接起來,(連接化簡后的數(shù))誰先按照要求做對(duì),誰先出場(chǎng)請(qǐng)你幫助她們解決這個(gè)問題.

【答案】-|-3|-0.5(-1)20190的相反數(shù)﹤比-的數(shù)

【解析】

先計(jì)算這5張卡片上的數(shù),再進(jìn)行比較即可.

解:∵-|-3|=-3, -0.5的倒數(shù)是-2,0的相反數(shù)是0(-1)2019=-1,比-的數(shù)是(-)+=2

-3-2-102

-|-3|-0.5(-1)20190的相反數(shù)﹤比-的數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC, BAC=90°,D是斜邊BC的中點(diǎn),E,F分別是AB,AC邊上的點(diǎn),且DEDF.

1)判斷DEDF的數(shù)量關(guān)系,并說明理由;

2)若BE=12,CF=5,求DEF的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地某廠和地某廠同時(shí)制成機(jī)器若干臺(tái),地某廠可支援外地臺(tái),地某廠可支援外地臺(tái),現(xiàn)決定給臺(tái),臺(tái),已知從運(yùn)往兩地的運(yùn)費(fèi)分別是元每臺(tái)、元每臺(tái),從運(yùn)往、兩地的運(yùn)費(fèi)分別是元每臺(tái)、元每臺(tái).

1)設(shè)地某廠運(yùn)往臺(tái),求總運(yùn)費(fèi)為多少元?

2)在(1)中,當(dāng)時(shí),總運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,,.

(1)如圖1,若,于點(diǎn),軸交于點(diǎn),則_____.

(2)如圖2,若,的平分線于點(diǎn),過上一點(diǎn)作,交于點(diǎn)的高,探究的數(shù)量關(guān)系;

(3)如圖3,在(1)的條件下,上點(diǎn)滿足,直線軸于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義點(diǎn)P(a ,b )的“伴隨點(diǎn)Q,且規(guī)定:當(dāng)ab時(shí),Q( b,-a );當(dāng) ab 時(shí),Q( a,-b).

(1)點(diǎn)(2,1)的伴隨點(diǎn)坐標(biāo)為__________;

(2)若點(diǎn)A(a ,2)的伴隨點(diǎn)在函數(shù)y=的圖像上,求a的值;

(3)已知直線l與坐標(biāo)軸交于(6,0),(0,3)兩點(diǎn).將直線l上所有點(diǎn)的伴隨點(diǎn)組成一個(gè)新的圖形記作M.請(qǐng)直接寫出直線y=—x+c與圖形M有交點(diǎn)時(shí)相應(yīng)的c的取值范圍為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別是A(6,0)、B(0,2),在AB的右上方有一點(diǎn)C,使△ABC是以AB為斜邊的直角三角形.

(1)若點(diǎn)C坐標(biāo)為(x,y),請(qǐng)?jiān)趫D1中作一點(diǎn)C(點(diǎn)A除外),使x+y=6;

(2)設(shè)點(diǎn)C坐標(biāo)為(x,y),請(qǐng)?jiān)趫D2中作一點(diǎn)C,使x+y的值最大,并求出x+y的最大值.

請(qǐng)利用沒有刻度的直尺和圓規(guī)作出符合條件的點(diǎn)C.(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道表示之差的絕對(duì)值,實(shí)際上也可理解為兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離,試探索:

1)求__________

2)找出所有符合條件的整數(shù),使得.滿足條件的所有整數(shù)值有___________

3)由以上探索,猜想對(duì)于任何有理數(shù),是否有最大值或最小值?如果有最大值或最小值是多少?有最__________(填“最大”或“最小”)值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 PQ 上有一點(diǎn) O,點(diǎn) A 為直線外一點(diǎn),連接 OA,在直線 PQ 上找一點(diǎn) B,使得△AOB 是等腰三角形,這樣的點(diǎn) B _____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從貨場(chǎng)出發(fā),向東走2千米到達(dá)批發(fā)部,繼續(xù)向東走1.5千米到達(dá)商場(chǎng),又向西走5.5千米到達(dá)超市,最后回到貨場(chǎng).

1)以貨場(chǎng)為原點(diǎn),以東為正方向,用一個(gè)單位長度表示1千米,你能在數(shù)軸上分別表示出貨場(chǎng),批發(fā)部,商場(chǎng),超市的位置嗎?

2)超市距離貨場(chǎng)多遠(yuǎn)?

3)此貨車每千米耗油0.1升,每升汽油6.20元,請(qǐng)計(jì)算此貨車一共需要多少汽油費(fèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案