(1)班同學上數(shù)學活動課,利用角尺平分一個角(如圖所示).設計了如下方案:
(Ⅰ)∠AOB是一個任意角,將角尺的直角頂點P介于射線OA、OB之間,移動角尺使角尺兩邊相同的刻度與M、N重合,即PM=PN,過角尺頂點P的射線OP就是∠AOB的平分線.
(Ⅱ)∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,將角尺的直角頂點P介于射線OA、OB之間,移動角尺使角尺兩邊相同的刻度與M、N重合,即PM=PN,過角尺頂點P的射線OP就是∠AOB的平分線.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,請證明;若不可行,請說明理由;
(2)在方案(Ⅰ)PM=PN的情況下,繼續(xù)移動角尺,同時使PM⊥OA,PN⊥OB.此方案是否可行?請說明理由.
解:(1)方案(Ⅰ)不可行.缺少證明三角形全等的條件,
∵只有OP=OP,PM=PN不能判斷△OPM≌△OPN;
∴就不能判定OP就是∠AOB的平分線;
方案(Ⅱ)可行.
證明:在△OPM和△OPN中,
,
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形對應角相等);
∴OP就是∠AOB的平分線.
(2)當∠AOB是直角時,此方案可行;
∵四邊形內(nèi)角和為360°,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵PM=PN,
∴OP為∠AOB的平分線.(到角兩邊距離相等的點在這個角的角平分線上),
當∠AOB不為直角時,此方案不可行;
因為∠AOB必為90°,如果不是90°,則不能找到同時使PM⊥OA,PN⊥OB的點P的位置.
科目:初中數(shù)學 來源: 題型:
如圖,Rt△ABC中,∠C=90°,AC=8,BC=4,PQ=AB,點P與點Q分別在AC和AC的垂線AD上移動,則當AP=_______時,△ABC≌△APQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
把一個圖形先沿著一條直線進行軸對稱變換,再沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做滑動對稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1).結合軸對稱變換和平移變換的有關性質,你認為在滑動對稱變換過程中,兩個對應三角形(如圖2)的對應點所具有的性質是( 。
| A. | 對應點連線與對稱軸垂直 | B. | 對應點連線被對稱軸平分 |
| C. | 對應點連線被對稱軸垂直平分 | D. | 對應點連線互相平行 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com