【題目】如圖,在平面直角坐標系中,已知點B(0,4),等邊三角形OAB的頂點A在反比例函數(shù)y=(x>0)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)把△OAB沿y軸向上平移a個單位長度,對應得到△O'A'B'.當這個函數(shù)的圖象經(jīng)過△O'A'B'一邊的中點時,求a的值.
【答案】(1)y=;(2)a的值是1或3
【解析】
(1)根據(jù)題意,可以求得點A的坐標,從而可以求得該反比例函數(shù)的解析式;
(2)根據(jù)題意,可分兩種情況,求出a的值,本題得以解決.
解:(1)∵點B(0,4),等邊三角形OAB的頂點A在反比例函數(shù)y=(x>0)的圖象上,
∴點A的坐標為(2,2),
∴2=,
得k=4,
即反比例函數(shù)的表達式是y=;
(2)當反比例函數(shù)y=過邊A′B′的中點時,
∵邊O′A′的中點是(,3+a),
∴3+a=,
得a=1;
當反比例函數(shù)y=過邊O′A′的中點時,
∵邊A′B′的中點是(,1+a),
∴1+a=,
得a=3;
由上可得,a的值是1或3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)與直線AB交于點A(2,3),直線AB與x軸交于點B(4,0),過點B作x軸的垂線BC交反比例函數(shù)的圖象于點C,在平面內(nèi)有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,則平行四邊形ABCD的面積為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應新舊動能轉(zhuǎn)換.提高公司經(jīng)濟效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺設(shè)備成本價為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600臺;每臺售價為45萬元時,年銷售量為550臺.假定該設(shè)備的年銷售量y(單位:臺)和銷售單價(單位:萬元)成一次函數(shù)關(guān)系.
(1)求年銷售量與銷售單價的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設(shè)備的銷售單價應是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,交AC于點E.
(1)求證:BD=CD.
(2)若弧DE=50°,求∠C的度數(shù).
(3)過點D作DF⊥AB于點F,若BC=8,AF=3BF,求弧BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)連接OB,MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.
(1)當?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時,求吊臂AB的長;
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計,計算結(jié)果精確到0.1m,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△C;平移△ABC,若A的對應點的坐標為(0,4),畫出平移后對應的△;
(2)若將△C繞某一點旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標;
(3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別相交于、兩點,點是的中點,點、分別為線段、上的動點,將沿折疊,使點的對稱點恰好落在線段上(不與端點重合).連接分別交、于點、,連接.
(1)求的值;
(2)試判斷與的位置關(guān)系,并加以證明;
(3)若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的方程
(1)求證:無論為何值,方程總有實數(shù)根.
(2)設(shè),是方程的兩個根,記,S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com