【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個交點,與y軸交點坐標是(0,3),把它向下平移2個單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個結論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判斷正確的有( )
A. ②③④ B. ①②③ C. ②③ D. ①④
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,則m=________.
【答案】
【解析】試題解析:∵二次函數(shù)有最小值﹣2,
∴y=﹣,
解得:m=.
【題型】填空題
【結束】
19
【題目】如圖,已知△ABC三個頂點的坐標分別是A(-2,3),B(-3,-1),C(-1,1)
(1)畫出△ABC繞點O逆時針旋轉90°后的△A1B1C1,并寫出點A1的坐標;
(2)畫出△ABC繞點O逆時針旋轉180°后的△A2B2C2,并寫出點A2的坐標;
(3)直接回答:∠AOB與∠A2OB2有什么關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、B、C、D到直線l的距離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關系式?證明你的結論.
(2)現(xiàn)將l向上平移,你得到的結論還一定成立嗎?請分情況寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點、在直線上,點在線段上,與交于點,.求證:.(完成以下填空)
證明:∵(已知),
且( )
∴(等量代換)
∴ ( )
∴( )
又∵(已知)
∴(等量代換)
∴( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,P是CD邊上一點,且AP、BP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示. AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC為45°,坡長AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺AC的距離CD.(結果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有 (多選、錯選不得分).
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=ADBD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+2bx+c(b、c為常數(shù)).
(Ⅰ)當b=1,c=﹣3時,求二次函數(shù)在﹣2≤x≤2上的最小值;
(Ⅱ)當c=3時,求二次函數(shù)在0≤x≤4上的最小值;
(Ⅲ)當c=4b2時,若在自變量x的值滿足2b≤x≤2b+3的情況下,與其對應的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com