【題目】已知:如圖,在ABC中,點(diǎn)DE分別在邊BCAB上,且ADAC,EBED,分別延長EDAC交于點(diǎn)F

1)求證:ABD∽△FDC;

2)求證:AE2BEEF

【答案】1)見詳解;(2)見詳解;

【解析】

(1)根據(jù)等腰三角形的性質(zhì)得到∠ADC=ACD,∠B=BDE,根據(jù)三角形的外角的性質(zhì)得到∠BAD=F,于是得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)得到,等量代換即可得到結(jié)論.

證明:(1)∵ADAC,

∴∠ADC=∠ACD

BEDE,

∴∠B=∠BDE,

∵∠BDE=∠CDF,

∴∠CDF=∠B,

∵∠BAD=∠ADC﹣∠B,∠F=∠ACD﹣∠CDF

∴∠BAD=∠F,

∴△ABD∽△FDC

2)∵∠EAD=∠F,∠AED=∠FEA,

∴△AED∽△FEA

AE2DEEF,

BEDE,

AE2BEEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,以點(diǎn)M(10)為圓心的圓與y軸,x軸分別交于點(diǎn)AB,C,D,與⊙M相切于點(diǎn)H的直線EFx軸于點(diǎn)E,0),交y軸于點(diǎn)F0,).

(1)⊙M的半徑r;

(2)如圖2所示,連接CH,弦HQx軸于點(diǎn)P,若cos∠QHC=,求的值;

(3)如圖3所示,點(diǎn)P⊙M上的一個(gè)動(dòng)點(diǎn),連接PEPF,求PF+PE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個(gè)交點(diǎn)為B(-1,4).

(1)求直線與雙曲線的表達(dá)式;

(2)過點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)PAD上一個(gè)動(dòng)點(diǎn),以PB 為對稱軸將APB折疊得到EPB,點(diǎn)A的對稱點(diǎn)為點(diǎn)E,射線BE交矩形ABCD的邊于點(diǎn) F,若AB4AD6,當(dāng)點(diǎn)F為矩形ABCD邊的中點(diǎn)時(shí),AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬踏飛燕作為商丘的地標(biāo)性雕塑被拆分為兩座雕塑,安放在緊鄰高速公路出站口的平原路和華商大道交叉口,不光臨近古城景區(qū),也靠近火神臺,恰恰實(shí)現(xiàn)了商丘市的城市文化宣傳的目的.人們來到商丘,一下高速,就看到商丘的地標(biāo),就能夠感受到商丘的火文化.

某中學(xué)數(shù)學(xué)興趣小組準(zhǔn)備測量安放后的雕塑相關(guān)數(shù)據(jù),如圖,小明從A點(diǎn)測得火球最高點(diǎn)E的仰角為4°30′,此處恰好看不到馬踏飛燕雕塑的最高點(diǎn)F,小明向雕塑走140m到達(dá)點(diǎn)B,此時(shí)測得點(diǎn)E的仰角為45°.已知兩雕塑的距離為50m,求兩座雕塑EC、FD的高度.(AB、CD在同一直線上)(精確到1m,參考值:sin4°30′≈0.07,cos4°30′≈0.99,tan4°30′≈0.08.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活質(zhì)量的提高,人們健康意識逐漸增強(qiáng),安裝凈水設(shè)備的百姓家庭越來越多.某廠家從去年開始投入生產(chǎn)凈水器,生產(chǎn)凈水器的總量y(臺)與今年的生產(chǎn)天數(shù)x(天)的關(guān)系如圖所示.今年生產(chǎn)90天后,廠家改進(jìn)了技術(shù),平均每天的生產(chǎn)數(shù)量達(dá)到30臺.

1)求yx之間的函數(shù)表達(dá)式;

2)已知該廠家去年平均每天的生產(chǎn)數(shù)量與今年前90天平均每天的生產(chǎn)數(shù)量相同,求廠家去年生產(chǎn)的天數(shù);

3)如果廠家制定總量不少于6000臺的生產(chǎn)計(jì)劃,那么在改進(jìn)技術(shù)后,至少還要多少天完成生產(chǎn)計(jì)劃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)調(diào)查社區(qū)居民雙休日的學(xué)習(xí)狀況,采取下列調(diào)查方式:①從一幢高層住宅樓中選取200名居民;②從不同住層樓中隨機(jī)選取200名居民;③選取社區(qū)內(nèi)的200名在校學(xué)生.

1)上述調(diào)查方式最合理的是   (填序號);

2)將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖(如圖①)和頻數(shù)分布直方圖(如圖②).

①請補(bǔ)全直方圖(直接畫在圖②中);

②在這次調(diào)查中,200名居民中,在家學(xué)習(xí)的有   人;

3)請估計(jì)該社區(qū)2000名居民中雙休日學(xué)習(xí)時(shí)間不少于4h的人數(shù);

4)小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時(shí),正好叔叔沒有學(xué)習(xí)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx22mxm2m1m為常數(shù)).

1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);

2)將該二次函數(shù)的圖像向下平移kk0)個(gè)單位長度,使得平移后的圖像經(jīng)過點(diǎn)(0,-2),則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸,y軸分別交于點(diǎn)A20),點(diǎn)B02),動(dòng)點(diǎn)D1個(gè)單位長度/秒的速度從點(diǎn)A出發(fā)向x軸負(fù)半軸運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E個(gè)單位長度/秒的速度從點(diǎn)B出發(fā)向y軸負(fù)半軸運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)Ex軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F

1)求∠OAB度數(shù);

2)當(dāng)t為何值時(shí),四邊形ADEF為菱形,請求出此時(shí)二次函數(shù)解析式;

3)是否存在實(shí)數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案