【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā)以2cm/s的速度沿B→A→C運動到點C停止.若△BPQ的面積為y運動時間為x(s),則下列圖象中能大致反映y與x之間關系的是( 。
A.B.C.D.
【答案】D
【解析】
作AH⊥BC于H,根據(jù)等腰三角形的性質(zhì)得BH=CH,利用∠B=30°可計算出AH=AB=2,BH=AH=2,BC=2BH=4,利用速度公式可得點P從B點運動到C需4s,Q點運動到C需8s,然后分類討論:當0≤x≤2時,作QD⊥BC于D,如圖1;當2<x≤4時,作QD⊥BC于D,如圖2;于是可得0≤x≤2時,函數(shù)圖象為拋物線的一部分,當2<x≤4時,函數(shù)圖象為拋物線的一部分,即可得到答案.
解:如圖1,作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH
∵∠B=30°,
∴AH=AB=2,BH=AH=2,
∴BC=2BH=4,
∵點P運動的速度為cm/s,Q點運動的速度為2cm/s,
∴點P從B點運動到C需2s,Q點運動到C需4s,
當0≤x≤2時,作QD⊥BC于D,如圖1,BQ=2x,BP=,
在Rt△BPQ中,DQ=BQ=x,
∴y=xx=x2.
當2<x≤4時,作QD⊥BC于D,如圖2,CQ=4-2x,BP=x,
在Rt△BDQ中,DQ==(4-2x),
∴y=(4-2x)=,
綜上所述,y=
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
求出每天的銷售利潤元與銷售單價元之間的函數(shù)關系式;
求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c如圖,則代數(shù)式①ac;②a+b+c;③4a﹣2b+c;④2a+b其值大于0的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=10,E,F分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,
(1)求∠B 的度數(shù)和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】改革開放40年來,中國已經(jīng)成為領先世界的基建強國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點F在線段HG上運動,BC∥HG,AE⊥BC,垂足為點E,AE的延長線交HG于點G,經(jīng)測量,∠ABD=11°,∠ADE=26°,∠ACE=31°,BC=20m,EG=0.6m.
(1)求線段AG的長度;
(2)連接AF,當線段AF⊥AC時,求點F和點G之間的距離.
(所有結(jié)果精確到0.1m.參考數(shù)據(jù):tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.
(1)求拋物線的解析式和頂點坐標;
(2)若p為x軸上方拋物線上一點,且三角形PAB面積為20,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學數(shù)學活動小組在學習了“利用三角函數(shù)測高”后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com