【題目】如圖,在正方形中, 為對角線, 的交點(diǎn),經(jīng)過點(diǎn)和點(diǎn)作⊙,分別交, 于點(diǎn), .已知正方形邊長為,⊙的半徑為,則的值為__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第12個圖形中有全等三角形的對數(shù)是( )
A. 80對B. 78對C. 76對D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).
(1)①畫出線段關(guān)于軸對稱的線段,則點(diǎn)的坐標(biāo)為 ;
②將線段平移至,其中點(diǎn)與點(diǎn)對應(yīng),畫出線段并寫出點(diǎn)的坐標(biāo);
(2)點(diǎn)在(1)中四邊形邊上,且是對角線上--動點(diǎn),則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形邊,,沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)為,將繞著點(diǎn)順時針旋轉(zhuǎn),旋轉(zhuǎn)角為.記旋轉(zhuǎn)過程中的三角形為,在旋轉(zhuǎn)過程中設(shè)直線與射線、射線分別交于點(diǎn)、,當(dāng)時,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點(diǎn)C,然后測出AC,BC的中點(diǎn)M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動的描述錯誤的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長和點(diǎn)C的坐標(biāo);
(2)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實(shí)數(shù)根,第三邊BC的長為5,當(dāng)△ABC是等腰三角形時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM=30,∠OCD=45
(1)觀察猜想
將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點(diǎn)O與點(diǎn)N重合,CD與MN相交于點(diǎn)E,則∠CEN= .
(2)操作探究
將圖1中的三角尺OCD繞點(diǎn)O按順時針方向旋轉(zhuǎn),使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CD與NM相交于點(diǎn)E,求∠CEN的度數(shù);
(3)深化拓展
將圖1中的三角尺OCD繞點(diǎn)O按沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)邊OC旋轉(zhuǎn) 時,邊CD恰好與邊MN平行。(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖所示,AD⊥BC于D,EF⊥BC于F,∠3=∠E,說明AD是∠BAC的角平分線請你完成下列說理過程(在橫線上填上適當(dāng)?shù)膬?nèi)容,在括號內(nèi)寫出說理依據(jù)).
理由:∵AD⊥BC,EF⊥BC(已知)
∴∠4=∠5=90°( ),
∴AD∥EF( ),
∴∠1= ( ),
∠2= ( ),
又∵∠E=∠3(已知)
∴ ( ),
即AD是∠BAC的角平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com