【題目】如圖,小明利用所學數(shù)學知識測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點E處,在E點測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點A、B、C、D、E在同一平面內(nèi),斜坡AD的坡度i=1:2.4,根據(jù)小明的測量數(shù)據(jù),計算得出建筑物BC的高度約為( )米(計算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)
A.157.1 B.157.4 C.257.4 D.257.1
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生規(guī)范書寫漢字情況,某市語言文字工作委員會從市區(qū)初中在校生中抽取了部分學生進行了調(diào)查,把調(diào)查的結(jié)果分為四個等級:級:優(yōu)秀;級:良好;級:合格;級:不合格,并繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣調(diào)查的學生人數(shù);
(2)求圖中的度數(shù),并把圖補充完整;
(3)調(diào)查人員想從位同學(分別記為,其中為小明)中隨機選擇兩位同學,參加中學生提高書寫漢字水平的座談會,請用列表或畫樹狀圖的方法求出選中小明的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為AB中點,以BE為邊作正方形BEFG,邊EF交CD于點H,在邊BE上取點M使BM=BC,作MN∥BG交CD于點L,交FG于點N.歐兒里得在《幾何原本》中利用該圖解釋了.現(xiàn)以點F為圓心,FE為半徑作圓弧交線段DH于點P,連結(jié)EP,記△EPH的面積為S1,圖中陰影部分的面積為S2.若點A,L,G在同一直線上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線y=kx+b交于點D,連接CD,當CD∥x軸時,求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,P,Q為頂點的三角形與△AOB相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C將線段AB分成兩部分,若AC2=BCAB(AC>BC),則稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行拋物線課題研究時,由黃金分割點聯(lián)想到“黃金拋物線”,類似地給出“黃金拋物線”的定義:若拋物線y=ax2+bx+c,滿足b2=ac(b≠0),則稱此拋物線為黃金拋物線.
(Ⅰ)若某黃金拋物線的對稱軸是直線x=2,且與y軸交于點(0,8),求y的最小值;
(Ⅱ)若黃金拋物線y=ax2+bx+c(a>0)的頂點P為(1,3),把它向下平移后與x軸交于A(+3,0),B(x0,0),判斷原點是否是線段AB的黃金分割點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的3月15日是“國際消費者權(quán)益日”,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的A商品成本為600元,在標價1000元的基礎(chǔ)上打8折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標價與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標價提高2m%,再大幅降價24m元,使得A商品在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達到了20000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=120°,點A,B分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(且),作點A關(guān)于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接AC,AD.有下列結(jié)論:
有下列結(jié)論:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不會隨著的變化而變化;
③當 時,四邊形OADC為正方形;
④面積的最大值為.
其中正確的是________________.(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點從點出發(fā),沿著矩形的邊順時針方向運動一周回到點,則點圍成的圖形面積與點運動路程之間形成的函數(shù)關(guān)系式的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級某數(shù)學小組在學完《直角三角形的邊角關(guān)系》這章后,決定用所學的知識設(shè)計遮陽篷(要求:遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)).他們制定了設(shè)計方案,并利用課余時間完成了調(diào)查和實地測量.調(diào)查和測量項目及結(jié)果如下表:
項目 | 內(nèi)容 | |
課題 | 設(shè)計遮陽篷 | |
測量示意圖 | 如圖,設(shè)計了垂直于墻面AC的遮陽篷CD,AB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時刻,太陽光線DA與遮陽篷CD的夾角∠ADC最大;冬至這一天的正午時刻,太陽光線DB與遮陽篷CD的夾角∠CDB最。 | |
調(diào)查數(shù)據(jù) | ||
測量數(shù)據(jù) | ||
… | … |
根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.
(結(jié)果精確到,參考數(shù)據(jù):,,,,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com