【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)

【答案】解:作PE⊥OB于點E,PF⊥CO于點F,

在Rt△AOC中,AO=100,∠CAO=60°,
∴CO=AOtan60°=100 (米).
設PE=x米,
∵tan∠PAB= = ,
∴AE=2x.
在Rt△PCF中,∠CPF=45°,CF=100 ﹣x,PF=OA+AE=100+2x,
∵PF=CF,
∴100+2x=100 ﹣x,解得x= (米).答:電視塔OC高為100 米,點P的鉛直高度為 (米).
【解析】在圖中共有三個直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分別求出CO、CF、PE,然后根據(jù)三者之間的關(guān)系,列方程求解即可解決.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】云南魯?shù)榘l(fā)生地震后,某社區(qū)開展獻愛心活動,社區(qū)黨員積極向災區(qū)捐款,如圖是該社區(qū)部分黨員捐款情況的條形統(tǒng)計圖,那么本次捐款錢數(shù)的眾數(shù)和中位數(shù)分別是( 。

A.100元,100元
B.100元,200元
C.200元,100元
D.200元,200元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.

(1)求證:直線FG是⊙O的切線;
(2)若AC=10,cosA=,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當 = 時,四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是射線CB上的一個動點,把△DCE沿DE折疊,點C的對應點為C′.
(1)若點C′剛好落在對角線BD上時,BC′=;
(2)若點C′剛好落在線段AB的垂直平分線上時,求CE的長;
(3)若點C′剛好落在線段AD的垂直平分線上時,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(參考數(shù)據(jù):≈1.414,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(2+﹣2cos60°;
(2)先化簡,再求值:(a﹣)÷,其中a=+1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2+ax2+bx﹣ (a>0,b∈R),f(x)在x=x1和x=x2處取得極值,且|x1﹣x2|= ,曲線y=f(x)在(1,f(1))處的切線與直線x+y=0垂直. (Ⅰ)求f(x)的解析式;
(Ⅱ)證明關(guān)于x的方程(k2+1)ex﹣1﹣kf′(x)=0至多只有兩個實數(shù)根(其中f′(x)是f(x)的導函數(shù),e是自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習冊答案