【題目】如圖,以AB為直徑的⊙O經(jīng)過點C,過點C作⊙O的切線交AB的延長線于點P,D是⊙O上于點,且弧BC=弧CD,弦AD的延長線交切線PC于點E,連接AC.
(1)求∠E的度數(shù);
(2)若⊙O的直徑為5,sinP=,求AE的長.
【答案】(1)90°;(2)4
【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠OAC=∠CAD,推出OC∥AE,根據(jù)平行線的性質(zhì)得到∠E=∠OCP.根據(jù)切線的性質(zhì)即可得到結(jié)論;
(2)運用三角函數(shù)值在Rt△OCP中求得OP,然后在Rt△APE中求得AE即可.
解:(1)連接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵弧BC=弧CD,
∴∠OAC=∠CAD,
∴∠OCA=∠CAD,
∴OC∥AE,
∴∠E=∠OCP,
∵PE是的切線,C為切點,
∴∠OCP=90°.
∴∠E=90°;
(2)在Rt△OCP中,OC= =2.5,sin∠P=,
∴OP=,
在Rt△APE中,AP=+2.5=,sin∠P=,
∴AE=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地鐵10號線某站點出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標(biāo);
(2)如圖1,過點P作PE⊥y軸于點E.求△PAE面積S的最大值;
(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:已知△ABC,用直尺與圓規(guī),在直線BC上方的平面內(nèi)作一點M(不與點A重合),使∠BMC=∠BAC(如圖1).
小明利用“同弧所對的圓周角相等”這條性質(zhì)解決了這個問題,下面是他的作圖過程:
第一步:分別作AB、BC的中垂線(虛線部分),設(shè)交點為O;
第二步:以O為圓心,OA為半徑畫圓(即△ABC的外接圓)
第三步:在弦BC上方的弧上(異于A點)取一點M,連結(jié)MB、MC,則∠BMC=∠BAC.(如圖2)
思考:如圖2,在矩形ABCD中,BC=6,CD=10,E是CD上一點,DE=2.
(1)請利用小明上面操作所獲得的經(jīng)驗,在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點P.點P滿足:∠BPC=∠BEC,且PB=PC.(要求:用直尺與圓規(guī)作出點P,保留作圖痕跡.)
(2)求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元.
(1)求這兩種品牌計算器的單價;
(2)學(xué)校開學(xué)前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器超出5個的部分按原價的七折銷售,設(shè)購買x個A品牌的計算器需要y1元,購買x(x>5)個B品牌的計算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)需要購買50個計算器時,買哪種品牌的計算器更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com